شرکت فولاد آلیاژی ایران (سهامی عام)

یکی از پیشروترین تولیدکنندگان
فولادهای آلیاژی و مخصوص در جهان

گرده و گروه های فولادی قابل تولید:

- فولادهای پرکریئن کیفی نظیر: 160
- فولادهای عملیات حرارتی پذیر نظیر: 4340-4140-4130
- فولادهای دمابرالا نظیر: 58
- فولادهای زنک نظیر: 316-304-302
- SAE/ AISI 52100
- SAE/ AISI 8620H
- ASTM A105
- SAE 4118
- DIN 1.7333
- DIN 1.7131
- DIN 1.7176
- DIN 1.8159
- DIN 1.5026
- DIN 1.7108
- دیاپراگم (RCS)
- دیاپراگم (30MVS)
- دیاپراگم (38B2)

ابعاد و اشکال تولیدات:

- میلیمتر
- میلیمتر
- میلیمتر
- میلیمتر
- کالف
- کالف
- کالف
- کالف

- کارخانه: یزد- بلوار آزادان- بلوار شهید دعکان متشادی- کیلومتر 33 جاده فولاد آلیاژی- کیلومتر 8920516898

- دفتر تهران: خیابان کریم خان زند- خیابان فاتمی مسجد شاه- پلاک 1- کیلومتر 1588326316- تلفن: 127- برونکار 405- 35- 30- 25

- دفتر مشهد: خیابان امام خمینی- پلاک 6- کیلومتر 1588326316- تلفن: 127- برونکار 405- 35- 30- 25

website: www.iasco.ir
E-mail: info@iasco.ir
export@iasco.ir
sales@iasco.ir
تولید کننده انواع ورق گالوایزه

محصولات شرکت فولاد امیر کبیر کاشان شامل ورق گالوایزه با کیفیت تجاری و کششی ورق فولادی نوروز سرد شده با کیفیت سخت و ورق نوروز سرد و آنل شده با کیفیت تجاری و کششی عمیق می‌باشد.

در راستای برنامه‌های طرح توسعه و به منظور تکمیل جرخه تولید محصولات نفت فولادی طول‌ترات کارخانه‌های نوروز و گالوایزه ضخامت و رنگی در دستور کار قرار دارد.

KASHAN AMIR KABIR STEEL CO.

info@amirkabirsteelco.ir
www.amirkabirsteelco.ir

کارخانه: کاشان، کیلومتر 16 جاده اردستان، مندوبیت پستی 15344 تلفن هائی تبسم: 021-85083000
فکس: 021-85083939
امور فروش مستقیم: 2-1-41438300
امور فروش دفتر تهران: 2-1-41438300
فکس: 021-85083939
دفتر تهران: خیابان ولیعصر، مقابل پارک ملت، خیابان ساوه، خیابان مهرزاد، ساختمان مدادی، طبقه سوم، کد پستی: 111111
تلفن هائی تبسم: 021-85083939
فکس: 021-85083939
دفتر استان: جمهوری شیخ صدوقی، ابتدای خیابان سعادت آباد، ساختمان 91 طبقه اول، واحد اول، تلفن: 021-85083939
فکس: 021-85083939
شرکت گلتک سازان سپاهان
تولید کننده قطعات ریختگی سنتگی کادمیومی و فولادی
ناوزن، انریخته گر مداوم شمش های فولادی

- صنایع فوکاد سازی و نورد:
پاتل سرباره، کوکل فولاد ریزی، کاوا تاندیش، قفسه نورد، چوک، میز راهنمای و سترپارت

- صنایع نیروگاهی:
بندنه و اجزای توربین های گازی و پخ‌دار، هاب توربین بادی و رانی توربین آبی

- صنایع فرآوری مواد معدنی و سیمان:
رنگ کوره، گلک کوره، هدوال، اسیاب، فک سنگ شکن و تراست رولر

- صنایع ماشین سازی:
اتوان قطعات مهندسی و صنعتی جهت ساخت تجهیزات

- صنایع خودرو سازی:
قالی‌های برش و شکل دهی بنده خودرو

- صنایع قالی‌های اکسترود آلومینیوم:
سیلیر، پستوئن و صفحات پرس

و انواع شمش ریخته گر مداوم و تک باره ای
جهت صنایع نورد و آهنگری

WWW.GHALTAKSAZAN.COM
web سایت: sales@GHALTAKSAZAN.COM

آدرس کارخانه: اصفهان، شهرک صنعتی پژوه شرق اصفهان
فاز دوم خیابان هفت، تلفن: 0431 6412859، فکس: 0431 6412860
شرکت صنایع مталورژی مصمم
تولید کننده انواع گلوله‌های آسیایی تو و خشک
ریخته گری انواع قطعات سبک، نیمه سنگین و سنگین

www.mosammam.com
info@mosammam.com
mosammampco@yahoo.com
اولین فصلنامه تخصصی صنعت نسوز

The First Specific Periodical Journal of Refractory Industry

این فصلنامه در راستای موارد زیر به شما عزیزان خدمات رسانی می‌نماید:

- تبلیغات و چاپ آگهی
- نشر مقالات کاربردی و دستاورد های نوین
- اطلاع رسانی سیمینار ها و اخبار علمی مواد و تولیدات نسوز
- بررسی مشکلات صنایع وارائه،پژوهش های تحقیقاتی
- حضور متفاوت و مؤثر در نمايشگاه های بین المللی مرتبط
- با صنایع در سراسر کشور
- کستره توزیع در سراسر کشور و صنایع وابسته به دیر گذار ها

اصفهان، شهرک صنعتی مبارکه، فاز اول، خیابان سوم، پلاک ۵/۱

کد پستی: ۵۵۴۶۴۱۲۳۵۶

شماره تماس: ۷۸۲۲۲۲۳۷۲۰۵-۳۱-۲۱
پیام فولاد
فصلنامه علمی - خبری انجمن آهن و فولاد ایران

صاحب امتیاز: انجمن آهن و فولاد ایران
مدیرمسئول و سرپرور: دکتر حسین ادریس

هیأت تحریریه:
دکتر عباس نژاد (استاد دانشگاه صنعتی اصفهان)
دکتر حسین ادریس (استاد دانشگاه صنعتی اصفهان)
دکتر علی شفیعی (استاد دانشگاه صنعتی اصفهان)
دکتر مرتضی شمیمانی (استاد دانشگاه صنعتی اصفهان)
دکتر کیان رضایی (استاد دانشگاه صنعتی اصفهان)
دکتر احمد سنمنی (استاد دانشگاه صنعتی اصفهان)
دکتر بهروز ایسرانی (دانشیار دانشگاه صنعتی اصفهان)
مهمان شفیعی (مهندس مهندسین صنایع) (شرکت آب و فاضلاب ایران)
مدیر اجرایی: مهندس مرتضی صالحی
مدیر روابط عمومی: فریدون ایمانی

طرح جلد و صفحه آرایی: شهرزاد اراکی
ناشر: انجمن آهن و فولاد ایران
چاپ: مجتمع چاپ ایران
شماره نسخه: 1460
بهای: 20000 ریال

پیام فولاد مطالب علمی - خبری بر زمینه آهن و فولاد
با زمینه‌های مرتبط با مستندی که جام مطالبی به منزله تأیید دیدگاه بیدار از نگاه آن نیست، نظر و
اقتباس از مطالب پیام فولاد با ذکر مأخذ آن مبنا بر است. دستورالعمل نهایی مطالعه جهت هدایت در پیام فولاد
در صفحات آن ارائه شده است. طراحی کلی جلد و
توجه بر عده صاحب مقاله می‌باشد. مطالعه های
پذیرفته شده پس از ویرایش منتشر می‌شود.

نشانی: دانشگاه صنعتی اصفهان، شهرک علمی
تحصیلات اصفهان، انجمن آهن و فولاد ایران
کدپستی: 87361-87311
تلفن: 833222333 تلفک: 833222333
E-mail: info@issiran.com
www.issiran.com
مطالعات

10 توسط و پیاده سازی مدیریت مخلوط شدن ذوبها در تاندیش ریخته‌گری بیوسه فولادها
ترجمه: محمد حسین نشاطی (شرکت فولاد آلیاژی ایران)

13 دسته‌بندی و نحوه بازیابی فلزات فولادی در فولادنوردانه‌های اولیه
ترجمه و نویسندگان: رضا علی‌نژاد، رضا حسن اسدی

18 آتشفشانی مطلق شکست های تولید کننده فولاد به روش کوره بلند (بخش دوم)
دکتر مهندس سیلاکی‌کی، مهندس ارشد طراحی، مهندس بازرگان طبیب، مهندس محمدحسین جوادزاده

23 ارزیابی تولید چند عضو جهان و ایران در سال ۲۰۱۶
نیازه و تصمیم‌گیری: مهندس محمدحسین جوادزاده (مشاور عالی شرکت فولاد ناب تبریز)

خوان

28 اخبار انجمن آهن و فولاد ایران
30 اخبار اخبار حقوقی انجمن آهن و فولاد ایران
31 اخبار برای انجمن

فوریه‌های اخبار

33 منتشری از مقالات منتشر در مجلات بین المللی آهن و فولاد (در این شماره)

35 مقالات منتشر در مجله بین المللی آهن و فولاد ایران (در این شماره)
International Journal of Iron & Steel Society of Iran Volume 13, Number 2 (June 2016)

معرفی کتاب

36 معرفی کتاب

سیاست‌ها

37 سیاست‌های آلیاژی

38 سیاست‌های داخلی

دانستنی‌ها

39 روش تنیست فلزات استخوان (SPT) در تولید فلزات نانوساختار
متشیله، مهندس ارشد، مهندس افتخاری، مهندس افتخاری، مهندس افتخاری

گزارش فنی

40 فولاد کم هزینه از قیمت‌های کم هزینه
ترجمه: گزارش: محمد حسین نشاطی

مصوبه‌ها

51 مصوبه‌ها

اطلاعات

56 برگزاری دوره‌های آموزشی انجمن آهن و فولاد ایران

59 انتشارات آهن و فولاد

61 فرم در خواست عضویت حقیقی و حقوقی در انجمن آهن و فولاد ایران

62 فراینده مقاله برای مجله بین المللی انجمن آهن و فولاد ایران

63 نشریه مدل بهبودی بیان کننده جهت مجله بین المللی علمی، پژوهشی انجمن آهن و فولاد ایران

56 راهنما ایش آشکار فصلنامه پایم فولاد

67 برگزاری برگزاری مقاله پایم فولاد

68 دستورالعمل قانونی انجمن آهن و فولاد ایران

ftar_123
شماره حاضر مجله پیام فولاد که همراه با سیموزوم فولاد 95 در اختیار شما خوانندگان عزیزی قرار گرفته، شامل چند مقاله علمی- کاربردی می‌باشد. در این جلد مقاله‌ای تحت عنوان "توسعه و پیاده‌سازی مدل مخلوط شدن ذوب‌ها در تاندلیش ریخته کری پوسته فولادها" برای اندکه مدل جدیدی جهت انطباق نگرداری فرآیند سیر گردن فولادها به همراه مطالعه‌ای برای پیش‌بینی ترکیب شیمیایی آن ارائه گردنده است. در اعداده مطلوب در وابسته به سیم‌رنگ با سرباره بی‌ایل در فرآیند فولادسازی توانایی گردآوری شده است که بخش دیگری از آن در شماره بعدی مجله برابر خوانندگان ارائه خواهد شد. در راستای عملکرد شرکت های بزرگ توییلا، کنده فولاد به روش کوروش بلند مقاله‌ای تحت عنوان در روند، این شرکت‌ها از مورد بررسی قرار داده است. در انتظار شش مقاله، مقاله‌ای بارگرفته است که به ارزیابی تولید چند ماده جهان و ایران در سال 1406 میلادی، بر روی بخش‌های این نشریه مطالعه مختل و در رابطه با جنبش فولاد اوروده شده است. در بیان تشکل تأسیسات و دیگری علی‌رغم فنی در راستای ارزیابی قرارگیری کم‌ترین بخش از تولید فولاد کم‌ترین بخش به بیان پیدا گردیده‌ای مفید جهت برداخته‌اند. امیدوارم حداکثر بخشی از مطالعه این شماره مورد استفاده شما همکار گرایی در انتظار داشته و صحت قرار گیرد.

دکتر حسن ازدی
مدیرسئول و سردبیر فصلنامه پیام فولاد
توسعه و یاده‌سازی مدل مخلوط شدن ذوب‌ها در تاندیش ریخته‌گری پیوسته فولادها

ترجمه: محمدحسین نشاطی
شرکت فولاد آمیزی ایران

در سال ۲۰۰۱ تصمیم گرفته شد مدل اختلاف‌گرایی اولیه برای ارائه تغییرات فراوانی در شرایط تولید، مدل‌سازی و توسعه کارکرد داشته، در آن امکان‌دسته‌بندی قادر به تشخیص تغییرات شرایط تولید و محل بهینه برنگاری را تهیه می‌نماید.

توسعه پایدار سازی مدل مخلوط شدن ذوب‌ها در تاندیش ریخته‌گری پیوسته فولادها

در سال ۲۰۰۳ صورت گرفت مدل در داخل شرکت توسط کارکنان تونسی به آنجام داده و محل بهینه برنگاری را تهیه کرد.

۱ ساختار کاری

جدول ۱ مشخصات شرایط تولید یک پیوسته را به‌طور خلاصه آورده است. به‌منظور بررسی و تأیید نتایج، نمونه‌ها از شرکت‌های مختلفی انتخاب شدند.

۲ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۳ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۴ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۵ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۶ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۷ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۸ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۹ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۱۰ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۱۱ ساختار کاری

روش تولید تاندیش در حال تولید با قراردادن ورق.

۱۲ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۱۳ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۱۴ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۱۵ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۱۶ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۱۷ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۱۸ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۱۹ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۰ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۱ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۲ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۳ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۴ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۵ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۶ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۷ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۸ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۲۹ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۰ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۱ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۲ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۳ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۴ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۵ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۶ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۷ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۸ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۳۹ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۰ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۱ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۲ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۳ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۴ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۵ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۶ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۷ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۸ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۴۹ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.

۵۰ ساختار کاری

روش تولید تاندیش درحال تولید با قراردادن ورق.
روش ورق گذاری است. این روش تقابلاً مشابه روش تعویض تاندیش در حال تولید است، این که وزن کمی تخیل می‌شود و بجای آن تا وزن کمی تعلیق می‌گردد، جنتانه در جدول 2، بینان شده است. روش ورق گذاری در محدوده از دست دادن به‌همه روش تعویض تاندیش در حال تولید بدون هزینه جایگزین کردن تاندیش را دارد. برای تغییرات گیاه‌های مشابه، روش اختلاف گیاه را استفاده می‌کنند. اهداف تغییرات گیاه‌های مشابه، روش اختلاف گیاه را استفاده می‌کنند.

<table>
<thead>
<tr>
<th>#2CC</th>
<th>#1CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>حداکثر سرعت</td>
<td>2.0 m/min</td>
</tr>
<tr>
<td>(واسته به گرده)</td>
<td>1.3 m/min</td>
</tr>
<tr>
<td>ضخامت استبدل</td>
<td>243 m</td>
</tr>
<tr>
<td>(در خروجی قالب)</td>
<td>240 m</td>
</tr>
<tr>
<td>پهنای استبدل</td>
<td>710 m</td>
</tr>
<tr>
<td>(در خروجی قالب)</td>
<td>500 m</td>
</tr>
<tr>
<td>طول ماشین</td>
<td>40 m</td>
</tr>
<tr>
<td>زاویه در خروجی قالب</td>
<td>165 m</td>
</tr>
<tr>
<td>با میله استبدل</td>
<td>100 m</td>
</tr>
<tr>
<td>وزن تاندیش</td>
<td>300 kg</td>
</tr>
</tbody>
</table>

اهداف و حیطه مدل

هدف اصلی مدل اختلاف گیاه در مدل‌گرایی ملکه واحد مدل‌گرایی برای اطمینان از آن است که تاندیش های درجه یک از مخلوط کردن گرده‌ها مناسب شوند. اهداف تاندیش تعیین تقریبی ترکیب شیمیایی به منظور اختصاص اسلب با گرده‌های مخلوط شده به سفارش‌های تاندیش و حداکثر کردن محصول خروجی اسلب درجه یک است.

حیطه توسه مدل اختلاف گیاه می‌تواند باید وسیع باشد که از تهیه‌گرده‌ها رهاسازی و از مخلوط کردن گرده‌های مختلف متفاوت می‌باشد.

جدول 2. جزئیات روشه‌های تغییرات گیاه.

<table>
<thead>
<tr>
<th>(ورق)</th>
<th>(ورق)</th>
<th>(ورق)</th>
<th>(ورق)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2CC</td>
<td>#1CC</td>
<td>#2CC</td>
<td>#1CC</td>
</tr>
<tr>
<td>ذوب شاخه 1</td>
<td>ذوب شاخه 2</td>
<td>ذوب شاخه 1</td>
<td>ذوب شاخه 2</td>
</tr>
<tr>
<td>وزن تعلیق تاندیش</td>
<td>15 نت</td>
<td>15 نت</td>
<td>45 نت</td>
</tr>
<tr>
<td>روش پرکردن مجدد</td>
<td>پابنده کامل‌اکر</td>
<td>پابنده کامل‌اکر</td>
<td>پابنده کامل‌اکر</td>
</tr>
<tr>
<td>وزن تاندیش</td>
<td>10 نت</td>
<td>15 نت</td>
<td>30 نت</td>
</tr>
<tr>
<td>سرعت تاندیش</td>
<td>0.1 m/min</td>
<td>0.1 m/min</td>
<td>0.1 m/min</td>
</tr>
<tr>
<td>کند کردن</td>
<td>حالت پایدار</td>
<td>بدون کنده</td>
<td>برای ورق گذاری</td>
</tr>
<tr>
<td>0.1 m/min</td>
<td>0.1 m/min</td>
<td>0.1 m/min</td>
<td>0.1 m/min</td>
</tr>
</tbody>
</table>
پیشینی‌های ترکیب شیمیایی به صورت آتوبایین

پیشینی دقيق ترکیب شیمیایی کانون اصلی مدل اختلاط
گرید است. آماده کردن پیشینی‌ها برای پایداری سازی ناز دارد
به چند نمونه تعمیمی می‌باشد:

• تهیه و تست مدل
• ملاحظات اختلافات شاخه
• زمان‌بندی ناز
• تغییر هر اندازه تعمیمی
• منطق زمانی ناز

تعدیل مدل- مدل پیشینی ناز دارد به رابطه که
غلظت انصافی را با صورت تابعی از مقدار شاخه‌های این
دهد. این رابطه به صورت معادله 1 تعیین می‌شود. ملاحظات
مهم قلم‌های از در بخش اختلافات غلظت مورد بحث
قرار می‌گیرند.

\[C(x) = \left[D(x) \right] C_{cd} + \left[1 - D(x) \right] C_{cw} \]

که در آن:

\[D(x) = \left(D(x) \right) \left(x \right) = \left(C(x) \right) C_{cd} \]

ملاحظات اختلافات شاخه- پیشینی‌های ترکیب شیمیایی
مدل اختلافات گرید شامل اثرات مولکول‌کردن شاخه نمی‌باشد.
اختلافات شاخه در هنگامی که به وخیب اضافه می‌شود، با به
این‌ها اضافه می‌شود و در انتها این‌ها به دو اصل کاهش می‌یابد.

ملاحظات عناصر از قابلیت از زمان باز کردن پایین،
غلظت عنصر را با صورت تابعی از مقدار شاخه‌های این
دهد. این رابطه به صورت معادله 1 تست می‌شود. ملاحظات
مهم غلظت‌های از در بخش اختلافات غلظت مورد بحث
قرار می‌گیرند.

\[C(x) = \left[D(x) \right] C_{cd} + \left[1 - D(x) \right] C_{cw} \]

که در آن:

\[D(x) = \left(D(x) \right) \left(x \right) = \left(C(x) \right) C_{cd} \]

ملاحظات اختلافات شاخه- پیشینی‌های ترکیب شیمیایی
مدل اختلافات گرید شامل اثرات مولکول‌کردن شاخه نمی‌باشد.
اختلافات شاخه در هنگامی که به وخیب اضافه می‌شود، با به
این‌ها اضافه می‌شود و در انتها این‌ها به دو اصل کاهش می‌یابد.

ملاحظات عناصر از قابلیت از زمان باز کردن پایین،
غلظت عنصر را با صورت تابعی از مقدار شاخه‌های این
دهد. این رابطه به صورت معادله 1 تعیین می‌شود. ملاحظات
مهم غلظت‌های از در بخش اختلافات غلظت مورد بحث
قرار می‌گیرند.

\[C(x) = \left[D(x) \right] C_{cd} + \left[1 - D(x) \right] C_{cw} \]

که در آن:

\[D(x) = \left(D(x) \right) \left(x \right) = \left(C(x) \right) C_{cd} \]

ملاحظات اختلافات شاخه- پیشینی‌های ترکیب شیمیایی
مدل اختلافات گرید شامل اثرات مولکول‌کردن شاخه نمی‌باشد.
اختلافات شاخه در هنگامی که به وخیب اضافه می‌شود، با به
این‌ها اضافه می‌شود و در انتها این‌ها به دو اصل کاهش می‌یابد.

ملاحظات عناصر از قابلیت از زمان باز کردن پایین،
غلظت عنصر را با صورت تابعی از مقدار شاخه‌های این
دهد. این رابطه به صورت معادله 1 تعیین می‌شود. ملاحظات
مهم غلظت‌های از در بخش اختلافات غلظت مورد بحث
قرار می‌گیرند.

\[C(x) = \left[D(x) \right] C_{cd} + \left[1 - D(x) \right] C_{cw} \]

که در آن:

\[D(x) = \left(D(x) \right) \left(x \right) = \left(C(x) \right) C_{cd} \]

ملاحظات اختلافات شاخه- پیشینی‌های ترکیب شیمیایی
مدل اختلافات گرید شامل اثرات مولکول‌کردن شاخه نمی‌باشد.
اختلافات شاخه در هنگامی که به وخیب اضافه می‌شود، با به
این‌ها اضافه می‌شود و در انتها این‌ها به دو اصل کاهش می‌یابد.

ملاحظات عناصر از قابلیت از زمان باز کردن پایین،
غلظت عنصر را با صورت تابعی از مقدار شاخه‌های این
دهد. این رابطه به صورت معادله 1 تعیین می‌شود. ملاحظات
مهم غلظت‌های از در بخش اختلافات غلظت مورد بحث
قرار می‌گیرند.

\[C(x) = \left[D(x) \right] C_{cd} + \left[1 - D(x) \right] C_{cw} \]

که در آن:

\[D(x) = \left(D(x) \right) \left(x \right) = \left(C(x) \right) C_{cd} \]

ملاحظات اختلافات شاخه- پیشینی‌های ترکیب شیمیایی
مدل اختلافات گرید شامل اثرات مولکول‌کردن شاخه نمی‌باشد.
اختلافات شاخه در هنگامی که به وخیب اضافه می‌شود، با به
این‌ها اضافه می‌شود و در انتها این‌ها به دو اصل کاهش می‌یابد.

ملاحظات عناصر از قابلیت از زمان باز کردن پایین،
غلظت عنصر را با صورت تابعی از مقدار شاخه‌های این
دهد. این رابطه به صورت معادله 1 تعیین می‌شود. ملاحظات
مهم غلظت‌های از در بخش اختلافات غلظت مورد بحث
قرار می‌گیرند.

\[C(x) = \left[D(x) \right] C_{cd} + \left[1 - D(x) \right] C_{cw} \]

که در آن:

\[D(x) = \left(D(x) \right) \left(x \right) = \left(C(x) \right) C_{cd} \]

ملاحظات اختلافات شاخه- پیشینی‌های ترکیب شیمیایی
مدل اختلافات گرید شامل اثرات مولکول‌کردن شاخه نمی‌باشد.
اختلافات شاخه در هنگامی که به وخیب اضافه می‌شود، با به
این‌ها اضافه می‌شود و در انتها این‌ها به دو اصل کاهش می‌یابد.

ملاحظات عناصر از قابلیت از زمان باز کردن پایین،
غلظت عنصر را با صورت تابعی از مقدار شاخه‌های این
دهد. این رابطه به صورت معادله 1 تعیین می‌شود. ملاحظات
مهم غلظت‌های از در بخش اختلافات غلظت مورد بحث
قرار می‌گیرند.

\[C(x) = \left[D(x) \right] C_{cd} + \left[1 - D(x) \right] C_{cw} \]

که در آن:

\[D(x) = \left(D(x) \right) \left(x \right) = \left(C(x) \right) C_{cd} \]
گردد، که جلوگیری کرده و منتج به مشکلات تمیزی فولاد ایجاد می‌نماید.

آلومینا، این به صورت بینی نشده تواند در زمان پیش‌بینی شده باشد و نتایج نهایی را در آن‌جا که علت اختلاط شاخه در این شرکت مورد استفاده قرار نگیرد.

استفاده قرار نگیرد.

به‌پیش‌بینی‌ها تنها آنالیز‌هایی که به‌دست آمده‌اند در صورت انجام شدند از‌نظر علمی و عملی کاملاً مطابق با سایر تجربیات بالاتر در این شرکت حساب می‌شود. این به‌عنوان آنالیز‌های دقت منطقه اختلاط را در نظر می‌گیرد.

اما این کار مسئولیت مقدار زیادی پیچیده‌گی مدل است. که به چند عامال، شامل شاخص‌های سرعت ریخته‌گری، پنهان اسلب، و شرایط خشک کردن شاخص حساس است. تلاش برای صحبت‌گرایی و تنظیم مدل که در نظر گرفته شده و در سطح خشک کردن را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را در نظر گرفته شده و در سطح خشک کردن را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و نرمال است. راه حل ۳ ملاحظات یافته‌های اختلاط شاخه را با بار زیاد و

جدول ۳. ملاحظات انتقالی پیش‌بینی‌های اختلاط شاخه

<table>
<thead>
<tr>
<th>مرحله‌ای متقابل اختلاط</th>
<th>تغییرات‌های اختلاط</th>
<th>ضعیف</th>
<th>وسیع</th>
<th>شاخص اصلی</th>
<th>شاخه</th>
<th>ضعیف</th>
<th>وسیع</th>
<th>شاخص اصلی</th>
<th>شاخه</th>
<th>ضعیف</th>
<th>وسیع</th>
<th>شاخص اصلی</th>
<th>شاخه</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله‌ی اولیه</td>
<td>بی‌بینی</td>
</tr>
<tr>
<td>مرحله دوم</td>
<td>بی‌بینی</td>
</tr>
</tbody>
</table>

شکل ۱. نتایج آزمایش برای آنالیز‌های مختلف در ضخامت اصلی در مرکز یک‌چهارم.
در طی ریخته‌گری یک ذوب تغییرات می‌کنند و پیش‌بینی این تغییرات مشکل است. مدل‌سازی تغییرات آلترنیت شیمیایی ذوب تابی به روابط ترمودینامیکی دارد که خارج از حیطه کار مدل اختلاط‌گری است.

بعنوان یک مثال مکاله، دو مجموعه پارامترهای انحصاری (یک مجموعه برای هر حجت) برای به‌بیان عناصر برای تغییرات کاهش و افزایش شیمیایی خاص عنصر مورد استفاده قرار می‌گیرد.

مقدار زمان نمونه‌گیری-مدل اختلاط‌گری آلاین

یکی از مسئله‌های آلترنیت شیمیایی را به مدل روش طول ایجاد می‌نماید. به طور کلی، تغییرات آلترنیت شیمیایی در طی ریخته‌گری، به طور کلی، تغییرات نیاز به روابط ترمودینامیکی دارد که خارج از حیطه کار مدل اختلاط‌گری است.

بتوجه به یک مثال مکاله، دو مجموعه پارامترهای انحصاری (یک مجموعه برای هر حجت) برای به‌بیان عناصر برای تغییرات کاهش و افزایش شیمیایی خاص عنصر مورد استفاده قرار می‌گیرد.

مقدار زمان نمونه‌گیری-مدل اختلاط‌گری آلاین

یکی از مسئله‌های آلترنیت شیمیایی را به مدل روش طول ایجاد می‌نماید. به طور کلی، تغییرات آلترنیت شیمیایی در طی ریخته‌گری، به طور کلی، تغییرات نیاز به روابط ترمودینامیکی دارد که خارج از حیطه کار مدل اختلاط‌گری است.

بتوجه به یک مثال مکاله، دو مجموعه پارامترهای انحصاری (یک مجموعه برای هر حجت) برای به‌بیان عناصر برای تغییرات کاهش و افزایش شیمیایی خاص عنصر مورد استفاده قرار می‌گیرد.

مقدار زمان نمونه‌گیری-مدل اختلاط‌گری آلاین

یکی از مسئله‌های آلترنیت شیمیایی را به مدل روش طول ایجاد می‌نماید. به طور کلی، تغییرات آلترنیت شیمیایی در طی ریخته‌گری، به طور کلی، تغییرات نیاز به روابط ترمودینامیکی دارد که خارج از حیطه کار مدل اختلاط‌گری است.

بتوجه به یک مثال مکاله، دو مجموعه پارامترهای انحصاری (یک مجموعه برای هر حجت) برای به‌بیان عناصر برای تغییرات کاهش و افزایش شیمیایی خاص عنصر مورد استفاده قرار می‌گیرد.
برسد. تعریف مشخص از خطاهای خاصی ندارد، زیرا هدف از تنظیم به حداقل رسیدن خطای صحت. تعریف خطای برای صحیح گذاشته شود. پاداً می‌کنند، دقت شیمیایی در ذیل مورد بحث قرار می‌گیرد.

• خطاهای نرمال شده (به‌همان‌طور که برای تنظیم کردن مدل تعریف شده)

۰. خطاهای نرمال شده (اندازه‌گیری می‌گردد به‌حساسیت ppm یا %wt)

چند مشکل با هر دو این اندازه‌گیری‌ها وجود دارد. خطای نرمال شده برای رایانه‌ها، رابطه زمانی به‌طور یک‌درخواست و قابلیت آزمایش‌گرایی نسبت به خطای کل، کوچک‌تر می‌باشد. اما، جهت تعیین نوع و مقدار خطای آزمایش‌گرایی، خطاها را با عناصر از 2 فازه که در آزمایش می‌تواند باعث تغییر 1ppm و 5ppm واقع شود آزمایش‌گرایی از 50–60 دلیل یک درصد از اندازه‌گیری غلظت شیمیایی را در نظر گرفت.

در این نمونه برای محاسبه، یک خطای مطلوب برآورد شده است. یک خطای عادی برای پیش‌بینی با حرارت و در دستیابی به مقدار مطمئن خطای غلظت شیمیایی (همان‌طور که تعریف شد) 0.0384 × غلظت عنصر آنالیز شده می‌باشد.

باید در نظر گرفت که خطای نرمال شده (اندازه‌گیری) غلظت عنصر آنالیز شده شامل این دو تغییرات می‌باشد: یک خطای مطلوب برآورد شده است. یک خطای غلظت نرمال شده (اندازه‌گیری) غلظت عنصر آنالیز شده شامل هر دو این اندازه‌گیری غلظت شیمیایی را در نظر گرفت.

برای خطاها، به‌صورت منطقی باید مشخص شود که خطای نرمال شده 20–70 درصد غلظت مشخص از اندازه‌گیری غلظت شیمیایی باشد.

برای انتخاب طریق مناسب برای پیش‌بینی غلظت عنصر آنالیز شده در مدل انتخاب گیری مناسب برای پیش‌بینی غلظت عنصر آنالیز شده در این مدل مطلوب بوده است. زیرا در محدوده آزمایش‌گرایی، با از این اندازه‌گیری غلظت شیمیایی واقع می‌باشد. در دو انتها اصل انتخاب‌گرایی برای پیش‌بینی آزمایش‌گرایی واقعی اصل برداشته می‌شود.

برای پیش‌بینی غلظت شیمیایی در هر دو انتها اصل انتخاب‌گرایی برای پیش‌بینی آزمایش‌گرایی واقعی اصل برداشته می‌شود.

برای پیش‌بینی غلظت شیمیایی در هر دو انتها اصل انتخاب‌گرایی برای پیش‌بینی آزمایش‌گرایی واقعی اصل برداشته می‌شود.

برای پیش‌بینی غلظت شیمیایی در هر دو انتها اصل انتخاب‌گرایی برای پیش‌بینی آزمایش‌گرایی واقعی اصل برداشته می‌شود.
نرم افزار پیش‌بینی آنالیز

بررسی پیش‌بینی‌های اختلاف گرد یک مدل تضمین کیفیت محصولات و هم به‌همت سرمایه‌گذاری است. اما، جمع آوری اطلاعات لازم و خلاصه کردن آن در نمودارهای مفید و مقادیر محاسبه شده می‌تواند اعاشاکندن باشد. مشخص گردد که توسعه نرم‌افزار برای خلاصه هر اطلاعات مدل اختلاف گرد سرمایه‌گذاری ارزشمندی در زمان و منابع است. بنابراین، (Web page) مدل اختلاف گرد براساس ارتباط شیبک ای توسعه داده شد. سطح نیاز کاربر شیبک ای در شکل 4 نشان داده شده است. ارتباط شیبک‌های دارای دو وظیفه اصلی است: تأیید پیش‌بینی و ترسیم پیش‌بینی.

تأیید پیش‌بینی دقت پیش‌بینی‌ها برای هر عنصر را خلاصه می‌کند. یک مثال در شکل 4 نشان داده شده است. عنصر بحرانی و غیربحرانی تقسیم می‌شوند. عنصر بحرانی تاییده می‌شود که واقعیت زیر بر آن برقرار باشد: حداکثر مشخصات گرید قدیم = حداکثر مشخصات گرید جدید. این روابط بیان می‌کند که اگر مشخصات جدید در گرید مشخصات قدیم ناشده، آگاهی امکانات راه آنالیز شیمیایی خارج از مشخصات باشد. بنابراین، عنصر بحرانی برای اختلاف گرید انتقالی است. تایید برای عنصر غیربحرانی در نظر گرفته می‌شود.

<table>
<thead>
<tr>
<th>Critical Elements</th>
<th>Approval Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>Good</td>
</tr>
<tr>
<td>ALT</td>
<td>Good</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>CA</td>
<td>Good</td>
</tr>
<tr>
<td>CB</td>
<td>Poor</td>
</tr>
<tr>
<td>CO</td>
<td>Fair</td>
</tr>
<tr>
<td>CF</td>
<td>Good</td>
</tr>
<tr>
<td>CL</td>
<td>Good</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Critical Elements</th>
<th>Approval Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>Good</td>
</tr>
<tr>
<td>ALT</td>
<td>Good</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>CA</td>
<td>Good</td>
</tr>
<tr>
<td>CB</td>
<td>Good</td>
</tr>
<tr>
<td>CO</td>
<td>Good</td>
</tr>
<tr>
<td>CF</td>
<td>Fair</td>
</tr>
<tr>
<td>CL</td>
<td>Good</td>
</tr>
</tbody>
</table>

مجموع نیاز کاربر برای نرم‌افزار اختلاف گرید.
نمودار پیش‌بینی اختلاط گرید نتایج انتقالی برای نیوپیوم

بهترین پیش‌بینی اخلاق گرید توانایی‌های خاص خود را به عنوان عوامل رتبه‌بندی مورد نظر قرار می‌دهد. بنابراین در این مورد، به عنوان غیر بسیار مهم است.

از طرفی که کاهش خطای مجاز می‌تواند باعث افزایش در عمق آنالیز شود.

• رتبه‌بندی دو برابر خطای مجاز می‌تواند باعث افزایش در عمق آنالیز شود.

• رتبه‌بندی دو برابر خطای مجاز می‌تواند باعث افزایش در عمق آنالیز شود.

• تصویب پیش‌بینی اختلاط گرید توانایی‌های خاص خود را به عنوان عوامل رتبه‌بندی مورد نظر قرار می‌دهد. بنابراین در این مورد، به عنوان غیر بسیار مهم است.

• رتبه‌بندی دو برابر خطای مجاز می‌تواند باعث افزایش در عمق آنالیز شود.

• رتبه‌بندی دو برابر خطای مجاز می‌تواند باعث افزایش در عمق آنالیز شود.

• پیش‌بینی اختلاط گرید هر دو رتبه اثبات می‌کند که:

• رتبه‌بندی دو برابر خطای مجاز می‌تواند باعث افزایش در عمق آنالیز شود.

• رتبه‌بندی دو برابر خطای مجاز می‌تواند باعث افزایش در عمق آنالیز شود.

• انتقال درون یا خارج از مشخصات است تریمی‌زدن راهبردهای مدل اختلاط گرید، برای استفاده کامل از مزایای اقتصادی مدل اختلاط گرید.
برای اندازه‌های کم به زیاد است. معادله ۶ برای برای تقریب‌زدن
اندازه‌های کم می‌باشد. پاناک در معادله ۷، نشان داده می‌شود.
\[x = \left[\ln \frac{S_{\text{new}} - C_{\text{new}}}{C_{\text{old}} - C_{\text{new}}} \right] W \frac{n}{-k} \] \tag{7}

اندازه‌های ناحیه واقعی مقادیری از اندازه‌های ناحیه تقریبی‌زده
شده خواهد بود. زیرا آنالیز‌های شیمیایی واقعی نیز مقداری با
آنالیز‌های تقریبی‌زده شده متفاوت خواهد بود. در اکثر
مواد، ابزار انتقال طول مدل برخی از طول اصلی عامل
تغییر برنامه برای اندازه‌های کم مشخصی واقعی می‌شود. خطاهای
تقریب اندازه‌های ناحیه به‌صورت در هنگامی که عناصر مشخص یاد
دارای محاسبات و حداکثر و حداکثر بسته می‌باشند (نسبت به قابلیت
کنترل آنالیز‌های شیمیایی) مشخص می‌باشد. در موارد نادر، هنگامی که
دو دو جدید خارج از مشخصات تولید شده ناحیه مخلوط شده
آدامه خواهد باید تا هنگامی که ناحیه مخلوط شده در حداکثر
محصولات اندامه ناحیه خانه‌ای باید.

همه عناصر با \(C_{\text{old}} \) تقریبی در حداکثر حداکثر
مشخصات ذوب خارجی که اندازه‌های حداکثر شیمیایی
مشخصات ذوب در گیرنده اعلام نماید. کاهش می‌یابد. اگر
همه عناصر فیلترشوند، تقریب اندازه ناحیه صفر است.

در اکثر موارد، یک عنصر کاندیدا پا داشت و وجود دارد.
محصول خروجی مورد انتظار که برای همگراگردان مورد نیاز
است باید برای همه آنها محاسبه شود. برگردان میزان محصول
خروجی تقریب اندازه‌های ناحیه است.

برای محاسبه محصول خروجی مورد نیاز، معادله ۶ و ۷
تربیت می‌شوند. همراهی‌ها در شکل ۶ نشان داده شده است.

\[\exp(-k \cdot W \frac{n}{-x}) = \frac{S_{\text{new}} - C_{\text{new}}}{C_{\text{old}} - C_{\text{new}}} \] \tag{6}

عبارت \(S_{\text{new}} \) که همان‌گونه‌ای که مشخصات اندازه
جدید برای‌گرفته‌های تقریبی‌زده‌باید - کم است باگیرنگ
می‌شود بر خلاف، این نمایانگر حداکثر مشخصات جدید

آیا می‌دانید؟

با تولید روزانه صنایع فولاد جهان می‌توان، ۵۳۴عدد بر جای ایفای ساخت.
(کتاب مرجع فولاد ۹۵)

آیا می‌دانید؟

در سال ۲۰۱۵ میزان تولید فولاد خام جهان، ۱۶۴۲ میلیون تن بوده است.
(کتاب مرجع فولاد ۹۵)
چکیده
تکنولوژی فولادسازی در طی دهه‌های اخیر به طور وسیع توسعه یافته است. امروزه تولید فولادهای خاص، دانش عمیقی از تمام فرایندها و پدیده‌ها از ذوب کردن فولاد تا ساخت و استفاده از محصول نهایی را فراهم کرده است. در کارخانه‌های فولاد، توزیع نهایی فولاد به همراه شیمیایی فولاد‌سازی در دو مرحله انجام می‌گیرد. به علاوه بهبود کیفیت فولادها و سهولت عملیات، فرایندهای فولادسازی به دو مرحله (۱) فولادسازی اولیه در کوره‌های تولید فولاد مس باز (۲) فولادسازی ثانویه تاثیرگذاری در پایان دستگاه فولادسازی می‌باشد. این دو مرحله به هنگام پایان تولید فولاد، تغییرات جرم و حرفه‌ای مخطط تولید می‌کنند. نتایج و در نتیجه اندازه‌گیری‌های ویژه خاص و جریان‌های اولیه در کوره‌های تولید فولاد مس باز و سهولت عملیات، فرایندهای فولادسازی به دو مرحله (۱) فولادسازی اولیه در کوره‌های تولید فولاد مس باز (۲) فولادسازی ثانویه تاثیرگذاری در پایان دستگاه فولادسازی می‌باشد.

سرایه‌پاتیل در فرآیند فولادسازی ثانویه (بخش اول)
ترجمه و نوشته: پریباژیژی، دکتر حسن ادرس

قراضه پیش گم شده آغاز می‌شود. پس از قرآیند ذوب و تصفیه، به مطابق عملیات فولادسازی ثانویه در کوره‌های پاتیل، جفت تصمیم و آبیاری فولاد ثانویه فولاد مس باز استفاده می‌شود. واحدهای لامف در فرآیند فولادسازی وظیفه گرم‌آگشدن، افزودن عناصر آلیانسی، گوگرد زدایی، حذف اکسیدها و کنترل دیق دما را بر عهده دارند.

در کارخانه‌های فولاد، توزیع نهایی فولاد به همراه شیمیایی فولاد‌سازی در دو مرحله انجام می‌گیرد. به علاوه بهبود کیفیت فولادها و سهولت عملیات، فرایندهای فولادسازی به دو مرحله (۱) فولادسازی اولیه در کوره‌های تولید فولاد مس باز (۲) فولادسازی ثانویه تاثیرگذاری در پایان دستگاه فولادسازی می‌باشد.

فولادسازی در کوره‌های پاتیل پیک فراژاد تاثیرگذاری که در آن فولاد مس باز از طریق دمای گاز آرگون از پایین پایه بهزاد شده و تتوسیع فلزات کربنیکی حرق داده می‌شود. برای بهبود کیفیت فولادها و سهولت عملیات مراحل، فرایندهای فولادسازی به دو مرحله (۱) فولادسازی اولیه در کوره‌های تولید فولاد مس باز و (۲) فولادسازی ثانویه تاثیرگذاری در پایان دستگاه فولادسازی می‌باشد. نتایج تحقیق برای مباحث تکنیکی نشان دهنده افزایش اکسیدهای فولاد مس باز گزارش داده می‌شود. در سال‌های اخیر، دمای گاز در مس باز از طریق توتی‌های مناسب برق گذاری زدایی که در دمای درایی تجویز ترتیب شیمیایی به همراه افزایش دما و حذف آمارها، مورد استفاده قرار گرفته است. شماکیک این قرآیند در شکل ۱ نشان داده شده است.

ظرفیت‌ها و بازیستی سریره
بازیستی سریره با افزایش مقدار اکسی‌ها به‌دست آمراتی‌ها و پدیده‌ها از ذوب کردن فولاد تا ساخت و استفاده از محصول نهایی را فراهم کرده است.

ظرفیت‌ها و بازیستی سریره
با استفاده از فناوری‌های نوین، به‌همراه افزایش معیار قابلیت بسیار
بیش‌تر نیی رابطه و استقرار در محصول نهایی را فراهم کرده است. فرآیند تولید به روش کوره قوس الکتریکی با شارژ...

1 Ladle Furnace
بازیسته نوری

با توجه به فرمول بازیسته نوری (A8) در زمینه شیمی Ingman و Duffy شیست و توسط راهکار جدید ایجاد شده، این روش در ابتدا توسط Somerville و Duffy، Ingman و بازیسته نوری کار گرفته شد. پس از آن، سپس از حقیقی از این روش برای روابط منبعی از سربارهای مالوزیکی استفاده گردید.

اندازه‌گیری ترجیح بازیسته نوری در محیط شفاف مانند شفافیت و همراهی آبی با استفاده از Pb^{2+} به عنوان پون بر روی انجام شد. در یک محیط از کسب، از همین‌طور کربن توسط اکسید باید کاهش داشته‌باشد. در این حالت با یک صفحه UV، می‌شود که این امر موجب انتقال در فرکانس باند طیفی UV گردد.

$$\Lambda = \frac{V_{\text{free}} - V_{\text{sample}}}{V_{\text{free}} - V_{\text{CaO}}}$$ (Raabe 1)

به طوری که $$V_{\text{free}}$$ و $$V_{\text{CaO}}$$ فرکانس‌های یکتا $$V_{\text{sample}}$$ در نمونه می‌باشند.

1 Slag Capacities
فرآیندهای رایج‌ترین CaF$_2$ انجام شده است.

معنی معمولی که کاربرد مفهوم بازی‌سازی نوری باید در روابط دو ترکیب معادلات 7 و 8 داریم:

$$\log C_p = \frac{3}{2} \log C_s + \log K_{\text{pw}} + \log \frac{\phi_{\text{p}}^{1/2}}{P_{\text{O}_2}^{3/2}}$$

راهبرد:

$$C_s = (\text{wt. } \% \text{ S}^2), \text{ po}^{1/2} / \text{ ps}^{1/2}$$

به طوریکه K_{pw}، اکثه‌ی قابلیت نام‌گذاری‌های جریانی در گاز ناحیه S_i و O_2 در سیسیم سولفید C_s را به صورت فشارهای معکوس طبیعی گردید به صورت سولفید، معرفی شده که از لحاظ رایانه‌ای:

$$C_s = \frac{K_{\text{pw}} \alpha_{\text{O}_2}^2 C_s}{\phi_{\text{S}_2}}$$

راهبرد (6)

به طوریکه K_{pw}، اکثه‌ی قابلیت S_i در سیسیم در مقدار مناسب می‌باشد.

راهبرد باشد.

$$\phi_{\text{S}_2}$$

راهبرد (5)

راهبرد باشد.

روش برای انتخاب گیری بازی‌سازی اسفاده‌ای شود.

راهبرد (4)

راهبرد باشد.

راهبرد باشد.

$$\phi_{\text{S}_2}$$

راهبرد (3)

راهبرد باشد.

راهبرد باشد.
تمیز نری ارائه شود. مورد طراحی مکاتبه‌ای تاندیش کارهای تحقیقاتی ژیان‌زار صورت گرفته است اما در ورد طراحی سرشار تاندیش پودر پوشش دهنده اطلاعات کمی وجود طراحی سرشارهای که مورد بهبود خانم آب‌زده خوار نبود. پودر پوشش تاندیش پایین بوده این امر را در اثر پودر پوشش تاندیش که در تولید فولاده‌ای کریتی مورد استفاده قرار می‌گرفتند. با اسید بودن، وی خانه‌ای (RHA) Rice Husk پودری سیلندر پایه خاکستر به خاطر خاصیت باعث پدید نمایش شد که از آن موضع باز هم اشاره به خاطر ایجاد و اکتشافات توانسته شده بودند اسیدی همچنین به خاطر ایجاد و اکتشافات توانسته شده از وولاده‌ای که در آن شده که در آن سیلندر پودری پوشش تاندیش بازی و دیده شده نشست. پودرها و پودر سیلندر باعث تعیین می‌گردد که در آن اثرات و ویژگی‌های فلزی در فرایند ریخته‌گری مداوم و نقش اساسی در اندیش پودرها و پودر سیلندر بازی در آن نمی‌باشد. که در آن پودرها و پودر سیلندر بازی در آن نمی‌باشد.

\[\text{log} C = mA + n \]

شکل 3 گازگیری طرفیت سولفات در برای باریکی بیشتر در دمای K

مهمه بازی‌های نوری، توسطصدای نشان مورد افتاده قرار گرفته است. تعداد 3 اساس تخمین بازی‌های نوری در سرشار را نشان می‌دهد. با افتراقهای C5 افزایش می‌یابد و با افزایش مشخص است که با بازی‌های ارتقاء دارد. بسیاری از مقţiصی‌های نشان داده اندازه

\[C = \frac{C_5}{m + n} \]

مهمه بازی‌های نوری توسطصدای نشان مورد افتاده قرار گرفته است. تعداد 3 اساس تخمین بازی‌های نوری در سرشار را نشان می‌دهد. با افتراقهای C5 افزایش می‌یابد و با افزایش مشخص است که با بازی‌های ارتقاء دارد. بسیاری از مقţiصی‌های نشان داده اندازه
تکثیر و اختلال در مکانیزم استریپ تندیسی می‌گردد.
بررسی پودرهای تندیسی نشان داد (جدول ۱) که محدوده وسیعی از پودرهای مختلف مورد استفاده قرار می‌گیرد [۲].

جدول ۱ پودرهای مختلف مورد استفاده در تندیسی

<table>
<thead>
<tr>
<th>Works</th>
<th>Powder</th>
<th>Composition %</th>
<th>Consumption (kg/tonne)</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecsidie</td>
<td>Powder A</td>
<td>C: 16.3 - 17.6 SiO₂: 36.1 CaO: 1.0 MgO: 1.1 Fe₂O₃: 7.2 Al₂O₃: 5.4 Si: 2.5</td>
<td>16 - 22</td>
<td>0.44 Surface blacked out cover added early during tundish fill Bagging at start</td>
</tr>
<tr>
<td>Scunthorpe</td>
<td>Powder B</td>
<td>C: 15.3 SiO₂: 49.65</td>
<td>8 - 12</td>
<td>0.41 Black practice approx 60 mm depth</td>
</tr>
<tr>
<td></td>
<td>Powder C</td>
<td>C: 15.3 SiO₂: 49.65</td>
<td>9 max</td>
<td>0.41 Black practice approx 60 mm depth</td>
</tr>
<tr>
<td>Port Talbot</td>
<td>Powder D</td>
<td>C: 5.1 Al₂O₃: <0.5 SiO₂: 87.5</td>
<td>2 - 3</td>
<td>0.18 50 mm depth in tundish</td>
</tr>
<tr>
<td></td>
<td>Powder E</td>
<td>C: 5.1 SiO₂: 85.5</td>
<td><0.05</td>
<td>0.19 50 mm depth in tundish</td>
</tr>
<tr>
<td>Linanwen</td>
<td>Powder F</td>
<td>Mainly SiO₂</td>
<td>95 - 95</td>
<td>50 mm depth in tundish</td>
</tr>
<tr>
<td></td>
<td>Powder G</td>
<td>Mainly SiO₂</td>
<td>90 - 90</td>
<td></td>
</tr>
<tr>
<td>SMACC (cow Avesta Sheffield)</td>
<td>Powder I</td>
<td>C: 1 SiO₂: 75 Mn: 8</td>
<td>7 - 15</td>
<td>50 mm depth in tundish</td>
</tr>
<tr>
<td>Ravenerslag (closed)</td>
<td>Powder J</td>
<td>C: 0.46 SiO₂: 81.4 Al₂O₃: 36.02 CaO: 10.23 MgO: 0.5</td>
<td>16 - 22</td>
<td>1 Used as active powder</td>
</tr>
<tr>
<td></td>
<td>Powder K</td>
<td>C: 1.03 SiO₂: 81.4 Al₂O₃: 36.02 CaO: 10.23 MgO: 0.5</td>
<td></td>
<td>0.27 Used as insulation powder</td>
</tr>
</tbody>
</table>

در جدول ۱ نشان داد که آنها آلومینیوم را جذب می‌کنند اما خاصیت عایق بندی ضعیفی دارند. مگر اینکه پودر عایقی از آنها ایجاد شود و اغلب آنها بوسیله غیرقابل فروغ ایجاد می‌کند که باعث جلوگیری از حکم پودر شود.

مراجع:

1 Stopper
آنالیز عملکرد شرکت‌های تولید کننده فولاد به روش کوره بلند (بخش دوم)

دکتر عباسعلی سیکنگی، مهندس افسر طبی، مهندس بازرگان، مهندس محمدحسن جولازاده

چکیده

ثبت فضای کسب و کار مانند قواعد برجام، قیمت میادین اصلی صنعت فولاد سیلک و زغال سنگ، قیمت محصول فشار اقتصادی قابل توجهی بر سرعت جهانی فولادی اعمال نموده است. لذا اکثر فولادسازان با افزایش رقابت و افزایش سودخود، نیاز به پیشرفت و مطالعه کاملی را در دستور کار خود قرار داده‌اند. مدیران شرکت‌های فولادی می‌پالایند که پاسخ به سوالاتی نظیر: چگونه راکشته‌های توانی را کاهش دهیم؟ چگونه توانی را افزایش دهیم؟ چگونه در بازارها رقابت و جایگاهی دارد را جهانی امکان فعالیت و حتی ادامه حیات اقتصادی شرکت‌های فولادی می‌باید. در این راستا صورت ضروری و اقتصادی از وضع را در نظر می‌گیرند. بدنی تریبون یا بهتره که کارتهای مالی و اقتصادی از وضع جامعه را بهینه کاوی باشند. بدين ترتیب به هر شرکت مشابه در جهان مالی ساکن سایر شرکت‌ها را مطالعه کرده‌اند. در این مقاله، مدل‌های تصویر جامع مالی و اقتصادی از وضع شرکت‌های فولادی منعكس کرده‌اند. تصویر جامع مالی و اقتصادی از وضع شرکت‌های فولادی جهانی امکان فعالیت و حتی ادامه حیات اقتصادی شرکت‌های فولادی می‌باید.

کلمات کلیدی: آنالیز عملکرد، بنچمارکینگ، بهره وری کوره بلند، رقابت‌پذیری

مقدمه

شبکه‌های تولید کننده فولاد به یکی از مهم‌ترین و تاثیرگذارترین شرکت‌ها در صنایع و اقتصاد کشور بوده‌اند.

جراحین کوره بلند-کونتر (برد) شکل 1 فولاد سازی مرسوم در دنیا و مواد مورد نیاز [1]

باتریاین برش برای افزایش تولید و حفظ بازار داخلی و صادرات پایین نظر داشته که کشورهای چین، روسیه، اکراین و ترکیه تهدیدی برای شرکت‌های

abbasalian@gmail.com

نویسندگان مسئول:

آنالیز عملکرد شرکت‌های تولید کننده فولاد به روش کوره بلند (بخش دوم)
آنالیز عملکرد شرکتهای تولید کننده فولاد به روش کوره بلند (بخش دوم)

از افزایش بهره وری تولید، فولاد و کاهش هزینه‌ها را همواره می‌نماید. لذا در این پژوهش و تحقیق، همانگونه که اشاره گردید عملکرد شرکت‌های برتر، از طریق یکی از روش‌های مطیع‌تجربه جهانی (جدول 1) مورد مقایسه قرار می‌گیرد. این شرکت‌ها در عین حال به لحاظ مشخصات زیر ساختمان تولید، یا شرکت‌های ایرانی شیفت زیادی دارند.

توجهی و تحلیل نسبت‌های فنی و مالی این شرکت‌ها به عوامل کیکی از اجزاء‌های مناسب برای تعیین جایگاه آنها مورد استفاده قرار می‌گرفته و از طریق آن مشکلات و نقاط ضعف و قوت شرکت‌ها تعیین می‌گردد (10-۶) انجام بهینه کاری شاخص‌های عملکردی (ناتیو جامیکا و انتقادی) می‌تواند به‌همراه تحلیل نسبت به عنوان یکی از ابزارهای مناسب برای تعیین جایگاه شرکت‌ها به کسب دانش جدید در جهت افزایش بهره وری و بهبود عملکرد در جهت افزایش رقابت‌پذیری گردیده. هدف از این مقایسه این است که به این‌سانه: اکنون کجا هستم؟ به چجواب داده‌می‌شود؟ برای این پرسش به آنجا بررسی و پاسخ به این پرسش با اعث توسعه شرکت‌های فولادی و همچنین جامعه فولاد ایران سه و مسیر

جدول 1 تولید کننده برتر فولاد دنیا (۱)

| شرکت‌ها |
| --- | --- |
| ArcelorMittal | Fangda Steel |
| Nippon Steel and Sumitomo Metal Corporation | Steel Authority of India Ltd. (SAIL) |
| Hebei Steel Group | Magnitogorsk Iron & Steel Works (MMK) |
| Baosteel Group | JSW Steel Limited |
| POSCO | Rizhao Steel |
| Shagang Group | Metinvest Holding LLC |
| Ansteel Group | Anyang Steel |
| Wuhan Steel Group | Taliyun Steel |
| JFE Steel Corporation | Baotou Steel |
| Shougang Group | Jingye Steel |
| Tata Steel Group | Jiuquan Steel |
| Shandong Steel Group | Zongheng Steel |
| Nucor Corporation | Techint Group |
| HYUNDAI Steel Company | Sanming Steel |
| United States Steel Corporation | Jinrui Steel |
| Gerdau S.A. | Zenith Steel |
| Maanshan Steel | Xinyu Steel |
| Tianjin Bohai Steel | Eregli Demir ve Çelik Fabrikaları TAS (Erdemir) Group |
| Thyssenkrupp AG | Guofeng Steel |
| Benxi Steel | SSAB |
| Novolipetsk Steel (NTMK) | Nanjing Steel |
| Evraz Group, S.A. | voestalpine Group |
| China Steel Corporation | CItic Pacific |
| Vaim Group | |
نتایج بینه‌کاوی
یکی از نسبت‌های مهم در فرایند بهینه‌کاوی، مقایسه حاشیه فروش می‌باشد که توسط سرمایه‌گذاران و تحلیلگران اقتصادی از آن بعنوان شاخصی در جهت تبعین نتایج ها و ضعف‌های اقتصادی شرکت مورد استفاده قرار می‌گیرد. این شاخص حاصل تقسیم سود شرکت قبل از بهره و مالیات بر مقدار فروش شرکت می‌باشد.

مطابق نمودار نشان داده شده در شکل ۲ حاشیه سود فروش کاردیمر نسبت به قیمت شرکت‌های خارجی در یاک‌نامه بهتری قرار دارد. این که در اینجا است که لحاظ حاشیه سود شرکت‌های فولادي، با افزایش تناسب، سود شرکت گردد. به عنوان مثال شرکت آرسلورپ می‌تواند به شدت ۹۱ میلیون تن یاک‌نامه با پی رتبه نسبت به کاردیمر دارد ولذا در شرایط کنونی احتمالاً افزایش تولید، شرکت کاردیمر را در شرایط مخاطره‌نرمال قرار خواهد داد.

در بررسی شاخص بازار، ارزش و پیش‌بینی بازگردان حقوق سهام شرکت‌های فولادي در شکل ۴ نشان داده شده است. شرکت کاردیمر دراین شرکت برابر با پیش‌بینی بوده و رشد سرمایه در گردد خویی تأمین نموده است. به‌نحای این پیش‌بینی به کاهش محسوس این پیش‌بینی در شرکت‌های مطرح همچون آرسلورپ و پناه‌ی این نموده است. این گونه شرکت‌های فولادي در وضعیت سود در خویی از محل سرمایه گذاری سهام‌داران نمی‌پایند.

هنگام‌که در شکل ۳ و ۴ نشان داده شده است، قیمت فروش و ارزش واحد کاردیمر در شرایط خوبی نسبت به قیمت شرکت‌های فولادي قرار ندارد. در بایستی وقت‌های اخیر قیمت فروش این شرکت‌ها به دقت مورد بررسی قرار گرفته ولی در طولی یا نژادی در نظر گرفته نشده، شرکت‌های فولادي در وضعیت سود در خویی از محل سرمایه گذاری سهام‌داران نمی‌پایند.

این است که بر اساس تجزیه و تحلیل، درآمد بسیاری از شرکت‌های فولادي در نقطه سرمایه بوده و جمع در آمد
مقايسه بر اساس آن می‌تواند شاخص خوبی در تشخیص عملکرد شرکت‌های فولادی باشد و میزان آمادگی آنها را در پیش‌رفتی با تغییرات و نوسانات در بازار نشان دهد.

این شاخص با میزان موجودی نشان دهنده شده در شکل ۷ در ارتباط زیادی‌تری می‌باشد و میزان ثابت‌العملی شرکت را نشان می‌دهد. بالا بودن نسبت فروش در کاربرد می‌تواند مؤثر باشد و عدم عملکرد مناسب آن در سال‌های اخیر باشد. در بین شرکت‌ها، با استقلال دارای پایین‌ترین نسبت فروش و لذا بازده بالایی شرکت را نشان می‌دهد.

عملکرد شرکت‌های فولادی به روش کوره بلند (بخش دوم)

قیمت فولاد در بازارهای جهانی کاهش یافته است و احتمال ادامه این روند نزولی قیمت وجود خواهد داشت (رجوع شود به شکل ۸). همچنین همان‌طور که در این شکل نشان داده شده است، میزان تولید جهانی فولاد خام در کشورهای عضو انجمن جهانی فولاد به نسبت سال‌های قبل کاهش داشته و به‌طور کلی جابجایی تولید فولاد در جهان روبه‌روی تضعیف است. در این بین با پایین بودن تقاضا و همچنین ضعف بازار داخلی ایران، دچار افزایش قیمت در ایران می‌شود. این باعث شده است که کاهش تولید و عقب‌نشینی تولید کننده‌اند خاصیت فولاد، احتمال پیدایش فاز را محتمل می‌سازد. با افزایش دانگی‌های چین این شرایط بحرانی تر خواهد شد.

با حضور آمار و اهداف‌های اقتصادی، تولید فولاد‌های آلیازی نسبت به فولاد خام افزایشی داشته و پیش‌بینی می‌گردد که تولید فولاد کلیدی کشور در خصوص تولید فولاد‌های خاص بهره‌برداری رایجی و پایداری داشته باشد.

آنانی که ایرانی‌ترین نسبت در بازار فولاد ایالات متحده آمریکا نشان‌گذارند نیاز به یکی از کشورهای در گروه‌های موجودی آن به عنوان بستری شرکت‌های فولادی را نشان می‌دهند. بالا بودن این نسبت در شرکت فولاد ایالات متحده آمریکا نشان‌گذارنیاران بازده این شرکت در گروه‌های موجودی آن به عنوان بستری شرکت‌های فولادی را نشان می‌دهند.

(بر اساس آن می‌تواند شاخص خوبی در تشخیص عملکرد شرکت‌های فولادی باشد و میزان آمادگی آنها را در پیش‌رفتی با تغییرات و نوسانات در بازار نشان دهد. این شاخص با میزان موجودی نشان دهنده شده در شکل ۷ در ارتباط زیادی‌تری می‌باشد و میزان ثابت‌العملی شرکت را نشان می‌دهد. بالا بودن نسبت فروش در کاربرد می‌تواند مؤثر باشد و عدم عملکرد مناسب آن در سال‌های اخیر باشد. در بین شرکت‌ها، با استقلال دارای پایین‌ترین نسبت فروش و لذا بازده بالایی شرکت را نشان می‌دهد.)
تقدیر و تشکر
از پژوهشگران فعال در صنعت تولید فولاد کشور بالخصوص هنگامی که در تهیه و انجام این پژوهش مراهم یاری نموده‌اند. تقدیر و تشکر می‌گردد.

منابع و مراجع:
[1] www.worldsteel.com
[10] www.platts.com
ارزیابی تولید چدن مذاب جهان و ایران در سال ۱۳۹۵

تهیه و تنظیم: مهندس محمد حسن جولارد
مشاور عالی شرکت فولاد نی‌باور

چندان مذاب یکی از ورودی‌های اصلی فولادسازی‌های دنیا به شمار می‌آید. در فرآیند تولید فولاد به روش کورنر اکسپزیتیون ۶۰ تا ۷۵/۲۰ جلوی با چندین مذاب تشکیل می‌دهند. در سال گذشته به شمار می‌آید ۳۰ میلیون تن چندن مذاب در کشورهای قوس کریکی جهان شار شده است. میزان تولید چدن مذاب جهان در سال ۱۳۹۵، با ۳/۸۳۱ میلیون تن رسید. هفتمین سال متوالی است که میزان تولید چدن مذاب جهان از قورت چنین می‌باشد. میزان تولید چدن مذاب جهان در سال گذشته که ۳۰۶/۷۹ میلیون تن بوده است نسبت به سال گذشته که ۳/۸۳/۷۹ میلیون تن بوده است تولید چدن مذاب به فولاد خام جهان ۷/۸ میلیون تن طرح می‌دهد. در سال گذشته مقدار کمی نیز در یکده گزارش رشته‌ای و جبهه (Corex & Finex) چدن مذاب تولید شد. در حال حاضر سرعت تولید چدن مذاب جهان در ماه اوت به میزان ۴۹/۵۱ میلیون تن و کمترین تولید ماهه‌ای چندن مذاب دنیا نیز در ماه فوریه به میزان ۴۸/۷۸ میلیون تن بوده است. با توجه به میزان تولید فولاد خام جهان در سال گذشته که ۳۰۶/۷۹ میلیون تن بوده است نسبت به سال گذشته که ۳۰۶/۷۹ میلیون تن بوده است بهره‌مندی چدن مذاب تولید از فولاد خام جهان ۷/۸ میلیون تن محسوب شده است. بیشتر دیگر هنوز فرآیند تولید فولاد خام به روش یادگیری آهن سمن اصلی تولید فولاد دنیا محصول می‌شود. در شکل ۱ می‌توانند تصویر نشان دهنده تولید چدن مذاب جهان در سال‌های ۱۳۸۰ تا ۱۳۹۵، از نظر می‌گذرد. در دینا، شکل ۲ می‌توانند نشان دهنده تولید چدن مذاب گسترش چنین می‌باشد.

گوگور چنین در سال گذشته به جهت استسابی به تولید ۴/۸۷ میلیون تن چدن مذاب ۳۴۸۴ میلیون تن سمنگ آهن از کشورهای مختلف جهان از جمله از ایران وارد کرده است. در دنیا این اولین بار است که میزان واردات سمنگ آهن یک کشور از مرز یک میلیارد تن عبور می‌کند. چنین اولین کشور جهان است که میزان تولید چدن مذاب سالانه آن به اولین للکس در مرز ۴۰۰ میلیون تن گذشته است. میزان تولید چدن مذاب این
کشور در طول چهارده سال گذشته (2000 - 2016) بیش از 4 برای شاهد است. میزان تولید جدید مذاب کشور چین در سال قبل بیش از 87 برابر میزان تولید جدید مذاب کشور زاپوش بوده است. در شکل 3 روند تولید جدید مذاب کشور چین طی سال های 1980 - 2016 نشان داده شده است. کشورهای زاپوش و هنده به ترتیب با تولید 80/68 و 63/63 میلیون تن جدید مذاب در رده های دوم و سوم دنیا استاند. در سال قبل نسبت جدید مذاب به فولاد خام در کشورهای زاپوش و هنده به ترتیب 78/68 و 76/68 بوده است. کشور چین در حالی است که 60/68 میلیون تن جدید مذاب دست یافته است که کلی سنت آهن و ذغال که شرکت مورد نیاز خود را از کشورهای میزان واردات سنت آهن کشور زاپوش 2016 در بخش از 120 میلیون تن بوده است. کشور چین جنوبی در سال گذشته 2 کاهش تولید از خود نشان داده و میزان تولید جدید مذاب این کشور در حدود 68/63 میلیون تن بیش از آن است. کشور جنوبی همانند زاپوش کل سنت آهن مورد نیاز خود به رهگیری تولید جدید مذاب به میزان 71/66 میلیون تن وارد کرده است. در سال گذشته نسبت جدید مذاب به فولاد خام در کشور چین چون در جدول 1 مشخصات 15 کشور بلند بزرگ جهان

<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Plant</th>
<th>Inner volume (m³)</th>
<th>Heart to diameter (m)</th>
<th>Built</th>
<th>Last reline</th>
<th>Nominal capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSCO</td>
<td>S. Korea</td>
<td>Gwangyang No. 1</td>
<td>5000</td>
<td>36.1</td>
<td>1987</td>
<td>2013</td>
<td>5.48</td>
</tr>
<tr>
<td>Shagang</td>
<td>China</td>
<td>Zhangjiagang II No. 4</td>
<td>5800</td>
<td>25.7</td>
<td>2009</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>NSSMC</td>
<td>Japan</td>
<td>Oita No. 2</td>
<td>5775</td>
<td>25.6</td>
<td>1972</td>
<td>2009</td>
<td>4.80</td>
</tr>
<tr>
<td>NSSMC</td>
<td>Japan</td>
<td>Oita No. 3</td>
<td>5775</td>
<td>25.6</td>
<td>1976</td>
<td>2004</td>
<td>4.80</td>
</tr>
<tr>
<td>POSCO</td>
<td>S. Korea</td>
<td>Pohang No. 4</td>
<td>5660</td>
<td>25.6</td>
<td>1982</td>
<td>2010</td>
<td>5.34</td>
</tr>
<tr>
<td>Severstal</td>
<td>Russia</td>
<td>Cherepovets No. 5</td>
<td>5580</td>
<td>25.2</td>
<td>1986</td>
<td>2006</td>
<td>3.90</td>
</tr>
<tr>
<td>Shougang</td>
<td>China</td>
<td>Caofedian No. 1</td>
<td>5726</td>
<td>25.5</td>
<td>2009</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>Shougang</td>
<td>China</td>
<td>Caofedian No. 2</td>
<td>5726</td>
<td>25.5</td>
<td>2010</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>NSSMC</td>
<td>Japan</td>
<td>Kimitu No. 4</td>
<td>5555</td>
<td>25.2</td>
<td>1975</td>
<td>2003</td>
<td>4.53</td>
</tr>
<tr>
<td>ThyssenKrupp</td>
<td>Germany</td>
<td>Schwelgern No. 2</td>
<td>5515</td>
<td>24.9</td>
<td>1993</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>POSCO</td>
<td>Japan</td>
<td>Gwangyang No. 4</td>
<td>5500</td>
<td>25.6</td>
<td>1992</td>
<td>2009</td>
<td>5.00</td>
</tr>
<tr>
<td>JFE Steel</td>
<td>Japan</td>
<td>Fukuyama No. 5</td>
<td>5400</td>
<td>25.3</td>
<td>1973</td>
<td>2005</td>
<td>4.28</td>
</tr>
<tr>
<td>NSSMC</td>
<td>Japan</td>
<td>Nagoya No. 1</td>
<td>5443</td>
<td>25.2</td>
<td>1979</td>
<td>2007</td>
<td>4.42</td>
</tr>
<tr>
<td>Kobe Steel</td>
<td>Japan</td>
<td>Kakogawa No. 2</td>
<td>5400</td>
<td>25.3</td>
<td>1973</td>
<td>2007</td>
<td>3.89</td>
</tr>
<tr>
<td>NSSMC</td>
<td>Japan</td>
<td>Kawasaki No. 1</td>
<td>5730</td>
<td>25.0</td>
<td>2004</td>
<td>4.00</td>
<td></td>
</tr>
</tbody>
</table>
جدول 2: تولید کوره بلند‌های شاخه جهان در سال 2016

<table>
<thead>
<tr>
<th>کشور</th>
<th>قطع بونه (متر)</th>
<th>سوخت کمکی</th>
<th>کوره بلند</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>5.2</td>
<td>sinter, oil</td>
<td>Rukki BF1, BF2</td>
</tr>
<tr>
<td>Sweden</td>
<td>4.2</td>
<td>pellets, coal</td>
<td>SSAB Turnplate BF2</td>
</tr>
<tr>
<td>Canada</td>
<td>4.1</td>
<td>pellets, PCI</td>
<td>AMDoFasco 4 BF</td>
</tr>
<tr>
<td>USA</td>
<td>3.9</td>
<td>pellets, PCI</td>
<td>SeverstALNA BF C</td>
</tr>
<tr>
<td>USA</td>
<td>3.8</td>
<td>pellets, HBI, gas</td>
<td>AK Middletown BF3</td>
</tr>
<tr>
<td>Belgium</td>
<td>3.6</td>
<td>sinter, coal</td>
<td>AM Ghent BF A</td>
</tr>
<tr>
<td>Argentina</td>
<td>3.5</td>
<td>sinter, coal</td>
<td>siderar 2</td>
</tr>
<tr>
<td>Japan</td>
<td>3.4</td>
<td>sinter, coal</td>
<td>Nisshin Kure 1 BF</td>
</tr>
<tr>
<td>Australia</td>
<td>3.3</td>
<td>pellets, coal</td>
<td>BS Port Kembla BF5</td>
</tr>
<tr>
<td>China</td>
<td>3.2</td>
<td>sinter, coal</td>
<td>Wuhan BF5</td>
</tr>
<tr>
<td>Netherland</td>
<td>3.1</td>
<td>sinter, coal</td>
<td>Tata Ijmuiden BF7</td>
</tr>
<tr>
<td>Korea</td>
<td>3.0</td>
<td>sinter, coal</td>
<td>Gwangyang BF1's 1-4</td>
</tr>
<tr>
<td>Japan</td>
<td>2.9</td>
<td>sinter, coal</td>
<td>Nippon, Steel, Oita BF2</td>
</tr>
</tbody>
</table>

با توجه به تولید کوره بلند‌های دنیا در سال ۲۰۱۶، جزئیات سازمان ملل متحد اشاره کرده است که میزان تولید کوره بلند در سال ۲۰۱۶ بالغ بر ۱۲ میلیون تن بوده است که در زنجان و راه‌اندازی ۶۰۰ هزار تن سال مورد بهره‌برداری قرار گرفته.

پیشینه می‌شود با استفاده از فناوری‌های پیشرفته، کوره بلند موجود در شرکت سه‌نازده ذوب آهن اصفهان، کوره بلند می‌تواند به عنوان یک درصد از صدها کشور جهان را در سال ۲۰۱۶ در عرصه تولید کوره بلند شاخص جامعه و سازگاری اجتماعی ایران با تولید ۳۵۱ میلیون تن جدید مایع رده بیست و هشتم جهان را از نظر کهاره است. میزان کاهش تولید کوره بلند ایران در سال ۲۰۱۶ بالغ بر ۸/۱۸ درصد شده است.

درحال حاضر، ایران با تولید کوره بلند به رتبه شانزدهم در جهان، در رتبه چهارم میان کشورهای توسعه‌یافته است. میزان تولید آهن اسفنجی در ایران در سال ۲۰۱۶ بالغ بر ۲۷/۱۹ میلیون تن بوده است. در حال حاضر، ایران با تولید اهمیت خاصی در تولید کوره بلند جهان است. در سال ۲۰۱۶، میزان تولید کوره بلند در ایران بالغ بر ۰/۸۷ میلیون تن بوده است. در حال حاضر، ایران با تولید کوره بلند به رتبه دهم در جهان، در رتبه چهارم میان کشورهای توسعه‌یافته است.
۲۰۱۶ در تولید چندن مذاب جهان ۹۱/۱ میلیون تن گزارش شده است. در سال ۲۰۱۶، بین این ناحیه نسبت چندن مذاب به فولاد خط از ۸۸/۵٪ محسوس شده است. کشور آلمان در سال قبل از تولید بالغ بر ۲۷ میلیون تن چندن مذاب در سال ۲۰۱۶ در شرکت رو به می‌رود. در سال ۲۰۱۵ در کشور اندونزی به زمره تولید کشتار گذاشته شده است. کشورهای قزاقستان و ایران به ترتیب ۲۳ و ۲۵ میلیون تن چندن مذاب در رده‌های دوم و سوم کشورهای اسلامی قرار گرفته‌اند.

در جدول ۳ رده‌بندی تولید کشتارگاه پیش‌تانی جهان در سال ۲۰۱۶.
کشور آمریکا در این تولید 22/6 میلیون تن اعلام شده است. در سال 2016 در ایالات متحده آمریکا بنیت چند مذاب به فولاد خام 18/0 برآورد شده است. بعضاً نشان داده شده است که در حال حاضر 1/3 از فولاد بر اساس پایه قراره تولید شده است. در شکل 7 نسبت چند مذاب بر فولاد خام در کشورهای مختلف جهان مشخص می‌شود.

نشان داده شده است که تولید چند مذاب کشورهای جنوب آمریکا در حدود 37/8 میلیون تن بیشتر است. کشور برزیل با تولید بیش از 24/7 میلیون تن چند مذاب عنوان برگزاری تولید کننده ناحیه جنوب آمریکا را کسب کرده است. میزان تولید چند مذاب کشورهای مشترک منافع توزیع 79/15 میلیون تن بیشتر است. سهم کشورهای روسیه و اکران در تولید چند مذاب کشورهای مشترک منافع به ترتیب بالغ بر 1/52 بالا و 23/76 میلیون تن گزارش گردیده است. در سال 2016 کشورهای (برزیل، روسیه، هند، چین و آفریقای جنوبی) 73/75 درصدی جهان را تولید کرده است. ناحیه اقیانوسیه 4/3 میلیون تن چند مذاب تولید داشته است.

آیا می‌دانید؟
کشور آکرایان تها کشوری است که 22/6 درصد فولاد خود را به روش زیمنس مارتنین تولید می‌کند. (کتاب مرجع فولاد 95)
مرکز تحقیقات و فناوری آهن و فولاد ایران و فولاد ایران ارائه نمودند. سپس تصمیم گرفتند به شرکت از اختیار جهت ثبت و تعیین نام این شرکت در سامانه اداره ثبت به‌زیست‌های کارشناس و متخصصان در ساختمان انجم سه‌ده‌ساله کارگاه بیش از 95 پس از بحث و بررسی قرارداد انتخاب و سپس از رأیجمهور نظر بابت آگاهی به‌زیست‌های شدید.

مرکز تحقیقات و فناوری آهن و فولاد ایران پس از تشکیل مجمع و جلسه هیأت مدیره و انتخاب اعضای هیأت مدیره سهامداران نسبت به وارد سهم خود به حساب بانکی این شرکت اقدام نمودند. اقدام جهت ثبت و تعیین نام این شرکت در سامانه اداره ثبت استان اصفهان صورت گرفت و پس از انجام مراحل نهایی و ارمال مستندات به‌داراده ثبت این شرکت ثبت پذیر شد. بنا بر میزان کل عنوان شرکت از اعضای هیأت مدیره به‌کار نموده‌اند. همچنین جلسه مدیریت متعددی به دعوت آقای دکتر عباس زاده به شورای هیئت مدیره مرکز تحقیقات آهن و فولاد ایران در جهت راه اندازی این شرکت صورت گرفته است و اعضای هیأت مدیره در رابطه با خرید زمین جهت استقرار این شرکت و تعیین محل مناسب در حال رایزنی و بررسی هستند.

اقدامات برگزاری سمپوزیوم فولاد 95

 سمپوزیوم فولاد 95 در خصوص همایش 10 و 11 اسفند ماه در هتل کایا لاله پارک تبریز برگزار می‌شود. همچنین با گرگزگری این سمپوزیوم فولاد در محل دائمی می‌باشد. همچنین همایش آفق مهم و ضروری، جنگنده جلسه با حضور مسئولین انجمن آهن و فولاد ایران و مدیران شرکت فولاد ناب تبریز در تبریز در خصوص نحوه برگزاری آن تشکیل شد. در ادامه جلسه‌ای در مورد 95/10/8 در دفتر انجمن آهن و فولاد ایران با حضور رییس هیئت مدیره انجمن آهن و فولاد ایران و چند نفر از اعضای هیئت مدیره انجمن و دیار انجمنی سمپوزیوم برگزار گردیده. در این جلسه، کلیه جنبه‌های مناسب به موارد اجرایی سمپوزیوم جهت برگزاری هرچه بهتر آمودریز و تبادل نظر قرار گرفت.

جلسه هیأت مدیره انجمن آهن و فولاد ایران

جلسه هیأت مدیره در مورد 95/327 در دفتر مدیریت انجمن آهن و فولاد ایران با حضور اگریت آرآ تشکیل شد. در این جلسه ضمن جلسه‌ی کنار هم‌کاری، آقای دکتر نجفی زاده (رئیس هیأت مدیره انجمن) گزارشی از عملکرد انجمن در فصل‌های اخیر و دلجزه‌های هیأت مدیره و همچنین فعالیت‌های انجام شده در خصوص تأسیس
کسب رتبه سوم طرح ارتقای استحکام فولاد در فازهای هجدهم جشنواره جوان خوارزمی

طرح ارتقای استحکام فولاد دو فازی در هجدهم جشنواره جوان خوارزمی

اثربخشی ارتقای استحکام فولاد دو فازی با شکل زمانی بالاکد با تحلیل آقای دکتر یوسف مظاهری و به راهنمایی استاد دانشگاه صنعتی اصفهان، جوان خوارزمی شرکت کرد، بود، موفق به دریافت رتبه سوم در بخش پژوهش‌های پیدانی از گروه مواد، ماتالوژی و نرخ‌های نو گردد.

آمار و شاخص‌های مهم صنایع فولاد جهان و ایران در زمینه‌های کاری، با به‌کارگیری تجارب و مفاهیم مختلف صنایع فولاد دنیا و ایران ارائه گردید که می‌تواند برسی مدیران ارشد منظوره، مسئولین صنعت فولاد و کارشناسان و پژوهشگران این صنعت مقیم باشد.

و در راستای تحقق شعار سمپوزیوم امسال به دیرخانه انجمن ارسال گردیده بود، در این جلسه داوران بر اساس موضوعات مختلف مربوط به تخصص خود اقدام به داوری مقالات نمودند. هر مقاله توسط 3 نفر متخصص تحت داوری قرار گرفت و مقالات برگزیده در دو بخش اولیه حضوری و پوستر پذیرفته شدند. گفتگوی تست که این جلسه جهت تقویت فعالیت های کارشناسان در صنعت فولاد بخشی از مقالات تحت عنوان گزارش فنی در مجموعه مقالات سمپوزیوم فولاد 95 به چاپ رسید.

جاب کتاب مرحل فولاد 95

این کتاب به صورت سالانه و به همت آقای مهندس محمد حسن جولازاده (عضو هیأت مدیره انجمن آهن و فولاد ایران) برای هفتمین سال متوالی با شرکت انتشارات آهن و فولاد تهیه و چاپ گردید.

در کتاب مرحل فولاد 95 سعی شده است اطلاعات

جانب آقای مهندس عزیز فنونی

بدین‌وسیله اتصاب بجا و شایسته جنبالی را به سمت مدیرعامل شرکت فولاد امیرکبیر کاشان تبریک عرض نموده، توانای روز افزون حضرتی را از دل گرامید می‌دان خواستارم.

دکتر عباس نجفیزاده

رئیس هیأت مدیره انجمن آهن و فولاد ایران
احماد عضوی حقوقی انجمن آهن و فولاد ایران

قرار آن سازمان را از طریق فراهم نمودن آمار و اطلاعات شفاف و فیزی در مورد بانگاه‌های اقتصادی کشور، فضای روشنی از گزارش‌های اقتصادی کشور برای مدد و به مدداران، سیاست‌گذاران و پژوهشگران نیز رسانده شده است. به برگردش معوقات بیشتری نسبت به رفتار معوقات بیشتری روش و راهکارهای بیشتری ارائه می‌گردد. در این راستا فولاد و باریز در سال جاری نسبت به سال 93 کاهش 22 درصدی را ثبت می‌کنند.

کاهش هزینه‌های تغذیه‌ای و تعمیرات در ناحیه نورد گرم

پایه‌گرداش روابط عمومی شرکت فولاد مبارکه اصفهان با همکاران و نماینده همکاران این شرکت، از هزینه‌های تغذیه‌ای و تعمیرات خطر نورد گرم به ویژه در بخش مصرف مصرفی به کمی کی نسبت به مدت مشابه سال قبل 17/6 درصد کاهش یافته است. این هزینه نسبت به سال 93 کاهش 22 درصدی را ثبت می‌کند.

طراحی و تولید ورقه‌ای گالوپنته با استهبان

پایه‌گرداش روابط عمومی فولاد مبارکه اصفهان و قرار اضافه‌های G400 با همکاری واحدهای متالورژی و روش‌های تولید و کارکنان واحد گالوپنته شرکت فولاد مبارکه تولید شد. کاربرد این محصول در ساخت سازه‌های فولادی با استهبان بالا در بازار، با توجه این نوع گرید، کلاس گالوپنته با ابعاد 1250*0.8 و گرید طبق استاندارد JIS G3302 تهیه می‌نماید.

فولاد آلاتی ایران

برای اولین بار در شرکت فولاد آلیاژی ایران

طرح‌های شکس با مقاطع گرد به گزارش روابط عمومی فولاد آلیاژی ایران، این شرکت در راستای تأمین سیستم مشتریان خود در قیمت ریخته‌گری تکیه‌گری مسئولان این شرکت در پایه‌گرداش روابط عمومی و تولید ورقه‌ای گالوپنته با مقاطع گرد نمود که در آینده نزدیک شکسته نخواهد کاهشی باشد. برای اولین بار در شرکت فولاد آلیاژی ایران خواهیم بود.

فولاد مبارکه اصفهان

به گفته روابط عمومی شرکت فولاد مبارکه اصفهان، سازمان مادریت مسئولیت رتبه بندی شرکت‌های برتر ایران
ساخت ماده‌های مستحکم و سبک با استفاده از گرافین

تغییر از پژوهش‌گران دانشگاه ماساچوست ماده‌ای از طریق پرس و زیستنیک‌های این گرافین تولید کرده‌اند که حالت استفتاچه دارد و دانسته آن 5 درصد دانسته فولاد و استحکام آن 10 برابر فولاد است. گرافین صخیح‌سازی سیمان نازک با ضخامتی به اندازه چند هنام اولین اسم این نازکی مانعی برای تولید مواد سبیلی آلومینیومی را از طریق تکنیک‌های تولید بهبود دادند. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده قرارداد نت و با کار گرفته است. این پوشش‌ها عمر فولاد گرافیتی را در شرایط شرید و خورده C

تولید تار عنکبوت با مشخصات تار عنکبوت واقعی

پژوهشگران موفقیت سهند نت عکبوت مصنوعی را با منشختار عکبوت ایجاد کرده که از فولاد مستحکم و از لاستیک کشمکش است. بوصرت و تیوولید کردن، تار عکبوت مقاوت بالای داد و در عین حال قیمت سبک و انعطاف‌پذیر است از این رو برخی آن فولاد زنده نمی‌مانند. این فولاد آن قدر محکم است که می‌تواند در آن توری ساخت و با آن که پوشش‌ها ردی 447 میلیون و 668 درصد تب که در مقایسه با ریک مدید می‌شود. ایران در سال 2015 میلادی و رتبه جهانی را کسب کرد. کاهش تولید فولاد کشور آلمان در سال 2016

با این که در ماه دسامبر تولید فولاد خام آلمان به‌طور داشت و در مجموع سال گذشته طبق پیش‌بینی‌ها کاهش یافت. در

www.sciencedaily.com
www.sciencealert.com
www.worldsteel.org
www.phys.org
www.en.rusnano.com
www.niscoir.com
www.fooladnews.com

امضاء تفاهم‌نامه

لوله‌های حفاری آلومینیومی با نانوپوشش

شرکت‌های Rusnano و Alcoa شرکت‌های Rusnano و Alcoa پیشرفت آلومینیوم با پوشش ضد سایش جهت حفاری چاه‌های نفت و گاز تولید کردن. این لوله‌های حفاری با پوشش‌های ضد
یکی از اهداف انجام آهن و فولاد چین، میزان تولید فولاد فعال گرام به تعداد ۲۰۱۶ آلمان می‌باشد. اگر در برنامه‌ریزی بالا بردند.

کل دو سال فولاد چین سال گذشته ۲۰۱۶۰۷ میلیون تن باشد که در مجموع سال ۲۰۱۶۰۷۱۲ میلیون تن تولید شده و به میزان مصرف ظاهري فولاد نیز ۱۰ درصد رشد داشته باشه و به میزان ۷۱۲میلیون تن تبدیل کرده باشه. بهبود تقاضای داخلی، جدایی باره صادرات را کم کرده و ورود از اواخر سال ۲۰۱۶ و موجب رشد سریع قیمت‌ها شده. قیمت‌های بیش در پارچه کن سال گذشته ۷۹ درصد بهبود داشت.

تعیین شدن واحدهای غیر استاندارد در چین

چنین قصد دارد واحدهای فائده استاندارد را در نهایی اول سال میلادی تعیین کند. در دهم زاموبی خبر افزایش محدودیت‌های تولید ساخته فولاد غیر استاندارد در کره‌های اقیانوسی قرار می‌گیرد که با بهبود تقاضای داخلی، جدایی بازار صادرات را کم کرده و ورود از اواخر سال ۲۰۱۶ و موجب رشد سریع قیمت‌ها شده. قیمت‌های بیش در پارچه کن سال گذشته ۷۹ درصد بهبود داشت.

به دلیل این افزایش هزینه‌های القا ۴۵ میلیون تن، دانشمندان این مکان آزمایشگاهی امکان دارند تا در آینده از ترکیبات کجار گرفته و قرار است به مدت ۴۵ سال به یک سرما یکتا کشور واگذار شود. اگر صنعت فولاد (۰دکتر و اگنا)
Stress analysis model of strip winding system with a sleeve for a coil of thin stainless steel
Yong-hui Park, Kyutae Park, Sung-yeun Won, Wan-kee Hong, Hyun-chul Park, Pages 1-7.

Interaction mechanism between coal combustion products and coke in raceway of blast furnaces
Chong Zou, Liang-ying Wen, Jun-xue Zhao, Rui-meng Shi, Pages 8-17.

Effect of screw casing structure on descending of burdens in COREX shaft furnace

Production of low-silicon molten iron from high-silica hematite using biochar
Hui-qing Tang, Xiu-feng Fu, Yan-qi Qin, Shi-yu Zhao, Qing-guo Xue, Pages 27-33.

Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO
Wei Li, Gui-qin Fu, Man-sheng Chu, Miao-yong Zhu, Pages 34-42.

Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel
Xue-feng Zhou, Di Liu, Wang-long Zou, Feng Fang, Yi-you Tu, Jian-qing Jiang, Pages 43-49.

Highly ameliorated gaseous and electrochemical hydrogen storage dynamics of nanocrystalline and amorphous LaMg12-type alloys prepared by mechanical milling
Dian-chen Feng, Hao Sun, Zhong-hui Hou, Dong-liang Zhao, Xi-tao Wang, Yang-huan Zhang, Pages 50-58.

Influence of on-line tempering parameters on microstructure of medium-carbon steel
Hua Zhang, Yan-xin Wu, Jian-xun Fu, Jie Xu, Qi-jie Zhai, Pages 59-66.

Dependence of tensile properties on microstructural features of bimodal-sized ferrite/cementite steels
Jiang-li Ning, Yun-li Feng, Ming-ming Wang, Shen-bai Zheng, Jie Li, Pages 67-76.

Oxidation resistance, thermal expansion and area specific resistance of Fe-Cr alloy interconnector for solid oxide fuel cell
Liu-zhen Bian, Zhi-yuan Chen, Li-jun Wang, Fu-shen Li, Kuo-chih Chou, Pages 77-83.

Microstructure and texture evolution during recrystallization of low-carbon steel sheets
Dong-dong Zhuang, Lei-gang Wang, Yao Huang, Xiao-min Li, Hua-yan Zhang, De-wei Ren, Pages 84-90.

Microstructure, texture and precipitates of grain-oriented silicon steel produced by thin slab casting and rolling process
Si-qian Bao, Yang Xu, Gang Zhao, Xiang-bin Huang, Huan Xiao, Chuan-long Ye, Na-na Song, Qing-ming Chang, Pages 91-96.
Preparation of porous titanium materials by powder sintering process and use of space holder technique

A first-principles study on electronic structures and elastic properties of metal doped α-Fe(N) high nitrogen steel
Ji-chun Yang, Xiang-jun Liu, Gui-xiao Jia, Xiao-yang Fu, Pages 103-110.

Tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure
Zheng-yun Zhang, Jian-chun Cao, Zhong-hua Zhong, Xiao-long Zhou, Wei Chen, Yin-hui Yang, Pages 111-120.
Identification of Retained Austenite, Ferrite, Bainite and Martensite in the Microstructure of TRIP Steel

The Influence of HH Type Steel Microstructure on the Distortion Behavior of Grate Bar Part in the Indurating Machine of Pelletizing Plant
M. Alizadeh, Y. Palizdar, Pages 7-12.

Exponential-type Constitutive Equation in Order to Use in Modeling the Warm Deformation of a Eutectoid Steel
H. Rastegari, M. Rakhshkhorshid, Pages 13-18.

Tribological Properties of B$_4$C-Ni Cermet Coating Produced by HVOF Process on the Surface of 4130 Steel

Strain-Induced Martensite Transformation Simulations during Cold Rolling of AISI 301 Austenitic Stainless Steel
M. Imaninezhad, T. Yan, A. Najafizadeh, Pages 26-30.

Preparation and Mechanical Properties of Nano/Ulrafine Bainitic Structure in AISI 52100 Steel

A Statistical Analysis of the Mechanical Properties of the Beam 14 in Lines 630 and 650 of Iran National Steel Industrial Group
B. Mansouri, A. H. Montazer Hojat, Pages 40-45.
عنوان کتاب: روش‌های پیشرفته جوشکاری
ترجمه و تألیف: دکتر ابراهیم حسین‌دوه‌کریمی، مهندس رسول سپهرزاد
و مهندس محسن محمدی
سال نشر: 1395

کتاب روش‌های پیشرفته جوشکاری در دو بخش (جوشکاری ذوبی و جوشکاری غیر ذوبی) به عنوان ۱۰ فصل منتشر گردیده است. در این کتاب، توصیف انواع انجام جوشکاری به همراه موارد و روش‌های آزمایش‌های غیر مخرب ایران منتشر شده است.

عنوان کتاب: مرجع فولاد 95
تألیف: مهندس محمد حسن جولازاده
انتشارات: انجمن آهن و فولاد ایران
سال انتشار: 1395

با توجه به اینکه پایداری صنعت فولاد به شاخص‌های توپری، مصرف، تجارت، مصرف انرژی، آب، نسبت، مواد گازی، و قارچه، انتشار گزارش‌های پژوهشی به همراه تئوری انسانی بهبودیابی، آموزش، توپری و استفاده از معرفی‌های فنی می‌تواند مدیریت راه‌های حمایتی و نقل مواد خام و محصولات نهایی و فنی و سایر عوامل دیگر یافته‌گری دارد. در کتاب مرجع فولاد 95 سعی شده است اطلاعات آماری و شاخص‌های مهم صنعت فولاد جهان و ایران جهت استفاده در زمینه‌های کاری، با کارگیری تجارب و منابع مختلف صنایع فولاد دنیا و ایران ارائه گردید. اطلاعات از آمار و شاخص‌های مهم صنایع سایر کشورهای دنیا و دیگر شرکت‌های مختلف جهان در جهت توسعه صنعت فولاد کشور مؤثر خواهد بود. در این راستا انجام آهن و فولاد ایران به عنوان انجمن علمی برتر کشور بر خود وظیفه داشته است کتاب مرجع فولاد را برای یاری همگان منتشر نماید. با توجه به اهمیت شاخص‌های صنایع فولاد در صنایع فولاد، شاخص مرکزی در این نسخه بطور جدیگر ارزیابی شده است. به این خواهید یاری کرد که این کتاب مرجع فولاد به صورت سالانه منتشر می‌شود و آمارهای به روزشده و جدید به پایه پرداخته می‌شود.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Location</th>
<th>Date</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140th International Conference On Recent Advances In Engineering and Technology (ICRAET)</td>
<td>Dubai, United Arab Emirates</td>
<td>1st-2nd March 2017</td>
<td>IASTEM</td>
</tr>
<tr>
<td>2</td>
<td>141st International Conferences on Metallurgy Technology and Materials (ICMTM)</td>
<td>Kuala Lumpur, Kuala Lumpur, Malaysia</td>
<td>1st-2nd March 2017</td>
<td>The IRES</td>
</tr>
<tr>
<td>3</td>
<td>Cold Rolling Fundamentals-A Practical Training Seminar</td>
<td>Indianapolis, IN, USA</td>
<td>5th – 9th March 2017</td>
<td>AIST</td>
</tr>
<tr>
<td>4</td>
<td>80th International Conference on Mining, Material, and Metallurgical Engineering (ICMMME)</td>
<td>Kyoto, Kyoto, Japan</td>
<td>7th -8th March 2017</td>
<td>Academics World</td>
</tr>
<tr>
<td>5</td>
<td>The 164th International Conference on Nanoscience, Nanotechnology and Advanced Materials (IC2NM)</td>
<td>Munich, Munich, Germany</td>
<td>2th-3th May 2017</td>
<td>Academics World</td>
</tr>
<tr>
<td>6</td>
<td>The 169th International Conference on Nanoscience, Nanotechnology and Advanced Materials (IC2NM)</td>
<td>Bangkok, Thailand</td>
<td>11th -12th May 2017</td>
<td>Academics World</td>
</tr>
<tr>
<td>7</td>
<td>157th International Conference on Nanoscience, Nanotechnology & Advanced Materials (IC2NAM)</td>
<td>Sydney, Sydney, Australia</td>
<td>4th-5th May 2017</td>
<td>ISER</td>
</tr>
<tr>
<td>8</td>
<td>International Symposium on New Developments in Advanced High-Strength Sheet Steels</td>
<td>Keystone, CO, USA</td>
<td>30th May-2th Jun 2017</td>
<td>AIST</td>
</tr>
<tr>
<td>9</td>
<td>9th World Congress on Materials Science and Engineering</td>
<td>Rome, Italy</td>
<td>12th -14th Jun 2017</td>
<td>Conference Series LLC</td>
</tr>
<tr>
<td>10</td>
<td>International Conference of Theoretical and Applied Nanoscience and Nanotechnology TANN17</td>
<td>Toronto, Canada</td>
<td>24th -25th Aug 2017</td>
<td>International ASET Inc.</td>
</tr>
<tr>
<td>پایگاه اینترنتی</td>
<td>زمان</td>
<td>عنوان</td>
<td>رده</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>www.issiran.com</td>
<td>10 و 11 اسفند ماه 1395</td>
<td>سمپوزیوم فولاد 95</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>bme2017.ir</td>
<td>31 فروردین ماه 1396</td>
<td>سمینار ملی بهینه سازی در علوم و مهندسی</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>ismc2017.modares.ac.ir</td>
<td>13 تا 14 اردیبهشت ماه 1396</td>
<td>پیست و بین‌جیهین کنفرانس سالانه بین‌المللی مهندسی مکانیک</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>www.gppconf.ir</td>
<td>13 و 14 اردیبهشت ماه 1396</td>
<td>اولین کنفرانس ملی فرآیندهای گاز و پتروشیمی</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>www.iranoilconf.ir</td>
<td>18 و 19 اردیبهشت ماه 1396</td>
<td>جهارمین همایش بین‌المللی نفت، گاز و پتروشیمی</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>icrare2017.iust.ac.ir</td>
<td>24 تا 26 اردیبهشت 1396</td>
<td>پنجمین کنفرانس بین‌المللی پیشرفت‌های اخیر در مهندسی راه‌آهن</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>www.icers.ir</td>
<td>26 تا 28 اردیبهشت ماه 1396</td>
<td>پانزدهمین کنگره دوسالانه و دومین همایش بین‌الملی انجمن سرامیک ایران</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>iopmc.uk.ac.ir</td>
<td>26 تا 29 اردیبهشت 1396</td>
<td>چهارمین همایش ملی معدن روباز</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>enconference.ir</td>
<td>20 خرداد ماه 1396</td>
<td>اولین همایش مسایلی توصیع پایدار در انرژی و محیط زیست</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>ufgnsm17.ut.ac.ir</td>
<td>21 و 22 آبان ماه 1396</td>
<td>ششمین کنفرانس بین‌المللی مواد فوق‌ریزدات و نانو‌ساختار</td>
<td>۱۰</td>
<td></td>
</tr>
</tbody>
</table>

آیا می‌دانید؟
در سال ۱۵۰ میان‌گین قیمت کتاب اتحادیه اروپا، ۱۷۱۹یورو بر تن بوده است.
(کتاب مرجع فولاد ۹۵)
دانستنی‌ها

روش تغییر شکل باستکیک شدید (SPD) در تولید
فلزات نانوساختار

مقدمه

فناوری نانو چیست و در کجا کاربرد دارد؟

فناوری نانو توایی ساخت، کنترل و استفاده از ماده در ابعاد نانومتری (1 تا 100 نانومتر) است. در این مقیاس، ابعاد ماده در حضور اتم‌ها تاثیر گذار است. به طوری که خواص فیزیکی، شیمیایی و فناوری‌هایی از اتم‌ها و مولکول‌ها با خواص توده‌ای، آنتی‌گیاه و مولکول‌ها به ترتیب آن‌ها را، فهم و بررسی خواص جدیدی از نهایت ماده‌ها در این ابعاد است که اثرات فیزیکی، ترمودینامیکی و استحکام‌های جدیدی از خود نشان می‌دهند.

طراحی و ساخت شیمیایی و زیستی محیط‌های زیستی از این رو به خوبی استفاده می‌کند.

2- اساس روش تغییر شکل باستکیک شدید در ایجاد
فلزات نانوساختار

هدف اصلی از تحقیق و توسعه روش فلزات فوق‌زیستی و نانوساختار، رسیدن به خواص ماده‌ای و یا پتولوژی‌ای هرچه بهتر است. به طوری که جهت افزایش و منبع‌های همیشه در تلاش بوده‌اند تا از انتظار و نانومتری و نسبت به فیزیکی به ترتیب ابعاد فلزی را از ابعاد میکرو‌سی در تولید کرده‌اند. به دنبال رشد، مراحل مختلفی برای اصلاح انتظار داده‌اند. فلزات ابعاد کبی در شکل، تیز و نازک استفاده می‌کنند. تحقیق و توسعه فلزات فوق‌زیستی و نانوساختار، دو روش اصلی استحلا به بالا و بالا به پایین، وجود دارد.

یکی از روش‌های تولید مواد با روش ریزکار برای شکل‌گیری

1. nano.ir/report, report@nano.ir
2. Multidisciplinary
3. Super-Plasticity
4. Bulk
5. Tribological
6. Grain structure refinement
7. Down-to-top
8. Top-to-down
پلاستیک شدید، ایجاد خاصیت خودرو را خسارت داده و در نتیجه، کارکرد خودرو به‌طورکلی به‌طور ناپایداری و ناهنجاری خودرویی می‌باشد.

2- کاربرد فلزات نانوساختار در صنایع مختلف

در صنایع هوا فضا، خودروسازی، حمل و نقل، کشتی‌سازی، تسیلی‌های انرژی نیرویی، کارخانه‌ها، انجام‌هایی در خودروسازی جهان از این کارکردهای شاخصی است که از بدنه خودرو، میله، سیستم‌های محرک، اجزای ساختمانی برخوردهای مختلفی دارند.

3- تکنیک‌های نانوساختار

نمونه‌های از این تکنیک‌ها عبارتند از: به‌طورکلی به‌طور ناپایداری و ناهنجاری خودرویی می‌باشد.

4- چاپ سه‌بعدی

نمونه‌های از این تکنیک‌ها عبارتند از: به‌طورکلی به‌طور ناپایداری و ناهنجاری خودرویی می‌باشد.

5- سیستم‌های نانوساختار

نمونه‌های از این تکنیک‌ها عبارتند از: به‌طورکلی به‌طور ناپایداری و ناهنجاری خودرویی می‌باشد.

6- چاپ سه‌بعدی

نمونه‌های از این تکنیک‌ها عبارتند از: به‌طورکلی به‌طور ناپایداری و ناهنجاری خودرویی می‌باشد.

7- سیستم‌های نانوساختار

نمونه‌های از این تکنیک‌ها عبارتند از: به‌طورکلی به‌طور ناپایداری و ناهنجاری خودرویی می‌باشد.
روش تغییر شکل پلاستیک شدید (SPD) در تولید فلزات نانوساختار

5- انواع روش‌های تغییر شکل پلاستیک شدید

همه‌نواز روش‌های تغییر شکل پلاستیک شدید عبارت است از:

- بیضی تحت فشار بالا (HPT)
- ترمیم در قالب راه‌های دار (ECAP)
- استراتفورمی تری (TE)
- نورد تک‌سازی (ARB)
- تمرین کری (FSP)
- قارن انستلکاسیون سطحی (SMAT)
- قارن انستلکاسیون سطحی (MDF)
- قارن انستلکاسیون سطحی (CEC)
- قارن انستلکاسیون سطحی (AS)

6- روش نورد تکمیل (ARB) در تولید نانوساختار

از این روش برای تولید ورق‌های فولادی فوق برخی از پژوهشگران واردASTE استفاده می‌شود. در حال حاضر روش ARB از این رو، با استفاده از تکنیکی مشابه شیشه‌برداری بهبود این روش می‌شود.

به شکل ۱ نیز می‌تواند به عنوان یکی از روش‌های موجود برای تولید نانوساختار استفاده شود.

با همه این اوصاف، به عنوان مشکلات و جالش‌های فنی و وسایل برای رسیدن به فلزات نانوساختار و جهت دادن تولید آنها با کیفیت بالا در ایجاد بالک به خصوص به شکل ورودی مورد استفاده است. بطور کلی، همه موارد نانوساختار که به روش‌های مختلف در ابعاد نانوساختاری که به روش‌های مختلف در ایجاد تولید فلزات نانوساختاری که به روش‌های مختلف در ایجاد تولید فلزات نانوساختاری که به روش‌های مختلف در ایجاد تولید فلزات نانوساختار

شکل ۱- نمونه‌ی تولید نانوساختار در ابعاد تغییر شکل پلاستیک شدید.
های ورقی نورد تجمعی مورد استفاده در تولیدی از فراکسر، شماتیک ۵ نکته اصلی اینلایش سالیکیو فولادی با ساختار نانومتری.

شکل ۳ نمودار مقایسه تعداد پتنت‌های مرتبه با روشهای مختلف SPD که بعد از سال ۲۰۰۰ وارد پاییز جهانی اوربیت شده‌اند.

شکل ۴ مقایسه آماری درصد پتنت‌های ثبت شده در پاییز جهانی اوربیت [۲].

درصد پتنت‌های ثبت شده

- HPT
- ECAP
- TE
- ARB
- برسر کاری
- FSP
- قرارداد اصطکاک مالی
- SMAT
- MDF
- RCS
- CEC

شکل ۵ شماتیکی از فراکس کاری نورد تجمعی مورد استفاده در تولید ورق‌های فولادی با ماشین‌های تولیدی.

روشهای ECAP در ایجاد دانه‌های نانومتری

مقدار نمونه در حین اعمال کرنش از طریق این فرایند ثابت باقی می‌ماند. لذا می‌توان نمونه را به دفعات متعددی از قالب عبور داد و در هر عبور مقداری کرنش پلاستیکی در فاز ذخیره کرد. هربار از محدودیت‌های این روش وقت‌گیر بوده‌این است. به طوری که برای دستایی به کرنش‌های مورد نظر باید نمونه را هربار از قالب خارج کرد و دوباره به داخل قالب وارد کرد و عملیات پرس کاری را انجام داد. لاحق‌الاًی که برای حذف این مرحله انجام گرده و پروشهای مختلفی در این زمینه در حال توسعه می‌باشد. بنابراین از روش ECAP برای تولیدات
روش تغییر شکل با استفاده از فشار بالا (HPT) در تولید قطعات نانوساختار

در این روش، نمونه اولیه معمولاً به شکل دیسک تشکیل شده که به طور همزمان تحت فشار هیدروراستیک و تنش های برگر قرار می‌گیرد. اصول این روش به صورت شماتیک در شکل ۷ نشان داده شده است.

۶-۴-۶ روش اکسترون نانوساختار در ایجاد خاصیت‌های فلزات

در این روش، نمونه در داخل قالب با اندازه‌ای همانی جهت ساخت ویژه‌ای از نانوساختارهای فلزات به‌کار می‌رود. این روش به صورت اکسترون نانوساختار (TE) به‌کار می‌رود.

۶-۴-۵ روش SMAT در تولید سطوح نانوساختار

عملیات سپری‌کننده مکانیکی سطح (SMAT) با ضربات محک (SMAT) به وسیله برخی از سطوح به‌کار می‌رود. این روش به صورت اکسترون نانوساختار (TE) به‌کار می‌رود.

۶-۴-۱ تغییر شکل با استفاده از فشار بالا (HPT)

در این روش، نمونه اولیه به شکل دیسک تغییر می‌کند. این روش به صورت SMAT به وسیله برخی از سطوح به‌کار می‌رود. این روش به صورت اکسترون نانوساختار (TE) به‌کار می‌رود.

۶-۴-۲ روش گریه کاری تحت فشار بالا (HPT)

در این روش، نمونه اولیه به شکل دیسک تغییر می‌کند. این روش به صورت SMAT به وسیله برخی از سطوح به‌کار می‌رود. این روش به صورت اکسترون NIS به‌کار می‌رود.

۶-۴-۳ تغییر شکل با استفاده از فشار بالا (HPT)

در این روش، نمونه اولیه به شکل دیسک تغییر می‌کند. این روش به صورت SMAT به وسیله برخی از سطوح به‌کار می‌رود. این روش به صورت اکسترون NIS به‌کار می‌رود.
7- جمع بندی
در طی یک دهه گذشته، روش تغییر شکل پلاستیک شدید به عنوان یکی از روش‌های جدید برای تولید مستقیم مواد فلزی با اندازه نانومتری مطرح شده است. مبتلا این روش کاهش اندازه دانه‌ها در نمونه‌های فلزی با آباد پز تهران از طریق اعمال کرنش‌های شدید بدون ایجاد تغییرات ابعادی در نمونه است. از جمله مهم‌ترین این روش‌ها می‌توان به RCS، HIP، ECAP، ARB، TE، FSP اشاره کرد. این روش‌ها با اندازه نانومتری مواد فلزی و با ابعاد بزرگ نمونه‌ها در اندازه دانه ای را به اصولی اضافه می‌کنند. این روش‌ها به اصول ایکه و معرفی روش‌های لازم جهت تولید مواد فلزی با اندازه دانه نانومتری را قراهم‌آورد.

مراجع:
[1] صیاد رضایی نزاری، ایجاد ساختار نانو در فولاد ژینگ

1 Cyclic Closed Die Forging
2 Hydrostatic Extrusion
3 Continuous Conshearing ECAP
4 Continuous Confined Strip Shearing Process
5 Constraint Groove pressing
6 Cyclic Die Channel Compression
7 Accumulative Press Bonding
گزارش فنی
فولاد کم هزینه از قراضه کم هزینه ۱
ترجمه گزارش: محمد حسن نشاطی

فولادسازان در سراسر جهان، هم مجتمع های بزرگ و هم مینی میل‌ها دارای افزایش رقابت‌پذیری در درآمد در حال رشد و افزایش. استفاده از "قراضه کم هزینه" راه جالب نیست. بلکه یک برنامه ارزش مورد استفاده (VIU) می‌باشد.

واژه کلمه "قراضه"، در زبان انگلیسی به معنی قراضه می‌باشد و در زبان فارسی به معنی هزینه می‌باشد. به هر حال، در اینجا به هزینه و قراضه کم هزینه اشاره آمده است.

2. Value in use
با دسته جمعی کم کن، یک مفهوم جدید نیست، بلکه تأثیر قراره "بر هزینه فولاد" بهره‌وری، محیط زیست، سرمایه‌گذاری و غیره را پیش‌بینی می‌کند. مانع از فرضیات تولید مذاب هزینه و تأثیر آن بر هزینه تولید فولاد نیمه تمام می‌شود. البته، اغلب به‌طور کلی برآمدگی آن را به‌دست آوردیم. با در نظر گرفتن، افزایش هزینه مصرف شارژ قابل دسترس است. هدف استفاده از ابزار بهینه‌سازی در فرآیند تولید در زمانی مصرف باید به تولید در زمانی فولاد کارخانه در این صورت جداگانه را باید هزینه منتجه آن را برای برنامه بهینه‌سازی باعث شود.

کمترین هزینه فولاد از راه داده.

با 20 تا 25 درصد قراره شارژ باید در صرفه جویی قابل توجهی توسط هزینه سایزی قراره قابل دسترس است. نیاز به قراره BOF و مواد آهنی جایگزین در برش بین 10 ساله شرکت میدرکس برای قراره شارژ فلزی آینده لحاظ نشده است. از آنجا که شارژ کردن قراره برای کاهش هزینه و برانگیز کمی دسترسی به HM در مورد نظر قرار نگرفته است، افزایش قراره مصرف باعث رفع قیمت خواهد بود (عرضه و تقاضا)، استفاده بیشتر از قراره ثانویه و استفاده کارآمدتر از قراره های گروهی (داخلي). چینی بیشتر ارزش برانگیز بهینه سازی را برای افزایش می‌دهد.

به‌طور کلی، فولاد در زمینه لوازم یک کارخانه تولید در زمانی که مصرف به استفاده بیشتر از مواد کمتر، در عین حال تأمین الگوهای تولید شیمیایی، هزینه مصرف شارژ مربوط به مدل بهینه‌سازی را می‌توان ارزیابی کرد. تعبیر "ماتریکس" و "محدودیت می‌کند.

با سه‌گانه، شرکت میدرکس برای برخی از این گروه‌ها به دو جبهه قراره شارژ نیاز دارد:

- استفاده از قراره با عناصر باید بهینه شود.

۱ Standard operating procedures
تأثیر قراره کم هزینه

جدول 1: نشان دهنده هزینه های قراره و کل هزینه های قراره و کل شارژ قراره در محصول مصرفی بالاترین می‌باشد. هر چند هزینه‌های تبدیل و نهایی به دید کمترین می‌باشد.

در ساخت و ترکیب شیمیایی قراره

جدول 1: نشان دهنده محدودیت های قراره و کل هزینه های قراره و کل شارژ قراره در محصول مصرفی بالاترین می‌باشد. هر چند هزینه‌های تبدیل و نهایی به دید کمترین می‌باشد.

در ساخت و ترکیب شیمیایی قراره

جدول 1: نشان دهنده محدودیت های قراره و کل هزینه های قراره و کل شارژ قراره در محصول مصرفی بالاترین می‌باشد. هر چند هزینه‌های تبدیل و نهایی به دید کمترین می‌باشد.

در ساخت و ترکیب شیمیایی قراره

جدول 1: نشان دهنده محدودیت های قراره و کل هزینه های قراره و کل شارژ قراره در محصول مصرفی بالاترین می‌باشد. هر چند هزینه‌های تبدیل و نهایی به دید کمترین می‌باشد.

جدول 1: نشان دهنده محدودیت های قراره و کل هزینه های قراره و کل شارژ قراره در محصول مصرفی بالاترین می‌باشد. هر چند هزینه‌های تبدیل و نهایی به دید کمترین می‌باشد.
<table>
<thead>
<tr>
<th>Grand Total</th>
<th>383,400</th>
<th>383,719</th>
<th>384,276</th>
<th>384,380</th>
<th>384,360</th>
<th>383,820</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.00%</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Chrome</td>
<td>0.03%</td>
<td>0.03%</td>
<td>0.03%</td>
<td>0.03%</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>Moly</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Total (Ni, Cu, Mn, S, Cr)</td>
<td>0.05%</td>
<td>0.07%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.11%</td>
</tr>
<tr>
<td>Niobium</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Carbond</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Sulphur</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Average Operating Variables

<table>
<thead>
<tr>
<th>BOF Yield, %</th>
<th>50.3%</th>
<th>50.5%</th>
<th>90.1%</th>
<th>90.1%</th>
<th>90.0%</th>
<th>50.1%</th>
</tr>
</thead>
</table>

Consumptions

<table>
<thead>
<tr>
<th>Coke, Lb/nt steel</th>
<th>131</th>
<th>121</th>
<th>123</th>
<th>123</th>
<th>124</th>
<th>124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas, Lb/nt steel</td>
<td>305</td>
<td>307</td>
<td>313</td>
<td>314</td>
<td>315</td>
<td>308</td>
</tr>
<tr>
<td>Dust, Lb/nt steel</td>
<td>120</td>
<td>121</td>
<td>123</td>
<td>124</td>
<td>124</td>
<td>122</td>
</tr>
</tbody>
</table>

Metals and Heat Data

<table>
<thead>
<tr>
<th>Scrap Box Density (lbs/Ft^3)</th>
<th>65</th>
<th>64</th>
<th>72</th>
<th>73</th>
<th>72</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrap Box per Heat</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>82</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>Blowing time, min</td>
<td>24.5</td>
<td>24.7</td>
<td>24.7</td>
<td>24.7</td>
<td>24.7</td>
<td>24.8</td>
</tr>
<tr>
<td>Tap to Tap Time, min</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
<td>48.0</td>
</tr>
<tr>
<td>Avg. prod./BOF, mt/hr</td>
<td>296.1</td>
<td>295.8</td>
<td>295.7</td>
<td>295.7</td>
<td>294.8</td>
<td>293.6</td>
</tr>
<tr>
<td>Days Required</td>
<td>27.0</td>
<td>27.5</td>
<td>27.3</td>
<td>27.3</td>
<td>27.3</td>
<td>27.5</td>
</tr>
<tr>
<td>Charge weight, lbs</td>
<td>141,292</td>
<td>141,584</td>
<td>141,661</td>
<td>141,660</td>
<td>141,673</td>
<td>141,673</td>
</tr>
<tr>
<td>Total Heat Charged, mt</td>
<td>337.8</td>
<td>337.8</td>
<td>337.8</td>
<td>337.8</td>
<td>337.8</td>
<td>337.8</td>
</tr>
<tr>
<td>Total Scrap Charged, mt</td>
<td>91.8</td>
<td>91.9</td>
<td>92.1</td>
<td>92.2</td>
<td>92.1</td>
<td>92.0</td>
</tr>
<tr>
<td>Total Metals, mt</td>
<td>429.6</td>
<td>429.7</td>
<td>430.0</td>
<td>430.0</td>
<td>430.1</td>
<td>430.1</td>
</tr>
<tr>
<td>Ladle Tons, mt</td>
<td>437.760</td>
<td>437.750</td>
<td>437.750</td>
<td>437.750</td>
<td>437.750</td>
<td>437.750</td>
</tr>
</tbody>
</table>

Overall Cost Data

<table>
<thead>
<tr>
<th>Hot Metal</th>
<th>$245.64</th>
<th>$245.64</th>
<th>$245.64</th>
<th>$245.64</th>
<th>$245.64</th>
<th>$245.64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Ore</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Scrap</td>
<td>$0.64</td>
<td>$0.64</td>
<td>$0.64</td>
<td>$0.64</td>
<td>$0.64</td>
<td>$0.64</td>
</tr>
<tr>
<td>BOF Yield Loss</td>
<td>$54.08</td>
<td>$54.13</td>
<td>$54.53</td>
<td>$54.53</td>
<td>$54.53</td>
<td>$54.53</td>
</tr>
<tr>
<td>Total Mettalls/C</td>
<td>$348.25</td>
<td>$348.44</td>
<td>$348.12</td>
<td>$347.11</td>
<td>$347.11</td>
<td>$347.11</td>
</tr>
</tbody>
</table>

Conversion Costs, $/tLadle steel

<table>
<thead>
<tr>
<th>Lime</th>
<th>$57.99</th>
<th>$58.11</th>
<th>$58.32</th>
<th>$58.34</th>
<th>$58.34</th>
<th>$58.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke</td>
<td>$78.00</td>
<td>$78.19</td>
<td>$78.38</td>
<td>$78.39</td>
<td>$78.39</td>
<td>$78.23</td>
</tr>
<tr>
<td>Oxygen</td>
<td>$4.49</td>
<td>$4.52</td>
<td>$4.52</td>
<td>$4.52</td>
<td>$4.52</td>
<td>$4.53</td>
</tr>
<tr>
<td>Desulfurization</td>
<td>$2.65</td>
<td>$2.65</td>
<td>$2.65</td>
<td>$2.65</td>
<td>$2.65</td>
<td>$2.65</td>
</tr>
<tr>
<td>Slag disposal</td>
<td>$1.53</td>
<td>$1.53</td>
<td>$1.53</td>
<td>$1.53</td>
<td>$1.53</td>
<td>$1.53</td>
</tr>
<tr>
<td>Fume deposit</td>
<td>$16.00</td>
<td>$16.37</td>
<td>$16.17</td>
<td>$16.16</td>
<td>$16.16</td>
<td>$16.09</td>
</tr>
<tr>
<td>Total Conversion Cost</td>
<td>$297.75</td>
<td>$300.07</td>
<td>$300.57</td>
<td>$300.62</td>
<td>$300.68</td>
<td>$303.19</td>
</tr>
<tr>
<td>Total Steel Cost</td>
<td>$310.16</td>
<td>$319.32</td>
<td>$319.31</td>
<td>$318.74</td>
<td>$318.50</td>
<td>$317.82</td>
</tr>
<tr>
<td>Other BOF Costs</td>
<td>$35.00</td>
<td>$35.00</td>
<td>$35.00</td>
<td>$35.00</td>
<td>$35.00</td>
<td>$35.00</td>
</tr>
<tr>
<td>Total Ladle Cost</td>
<td>$451.17</td>
<td>$464.32</td>
<td>$464.01</td>
<td>$464.37</td>
<td>$464.59</td>
<td>$462.89</td>
</tr>
</tbody>
</table>

Total Ladle Steel

<table>
<thead>
<tr>
<th>Item</th>
<th>$160,076,956</th>
<th>$160,245,884</th>
<th>$163,523,265</th>
<th>$165,035,717</th>
<th>$165,085,609</th>
<th>$163,075,607</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saving vs. User Mix, int</td>
<td>$1.84</td>
<td>$1.14</td>
<td>$1.42</td>
<td>$1.57</td>
<td>$1.57</td>
<td>$2.32</td>
</tr>
<tr>
<td>Monthly Saving</td>
<td>$712,112.58</td>
<td>$463,687.88</td>
<td>$348,681.13</td>
<td>$607,355.61</td>
<td>$901,357.00</td>
<td>$901,357.00</td>
</tr>
</tbody>
</table>
Results

Table 2 compares the costs of different BOF mixes with and without a mixed metallics addition. The table highlights the cost savings achieved by implementing OptiMiser® (SO) in a blending operation.

Metallics

<table>
<thead>
<tr>
<th></th>
<th>User Mix</th>
<th>SO Mix</th>
<th>SO with Habi HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Hot Metal</td>
<td>74.1%</td>
<td>78.4%</td>
<td></td>
</tr>
<tr>
<td>Iron Ore</td>
<td>1.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USS Yield</td>
<td>90.9%</td>
<td>90.1%</td>
<td>90.6%</td>
</tr>
<tr>
<td>Scrap Use</td>
<td>3.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 Dealer Bundles</td>
<td>1.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrap S</td>
<td>6.5%</td>
<td>10.5%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Shear S</td>
<td>6.5%</td>
<td>12.4%</td>
<td>14.3%</td>
</tr>
<tr>
<td>#1 HBI</td>
<td>2.2%</td>
<td>18.5%</td>
<td>22.3%</td>
</tr>
<tr>
<td>#2 Bundle</td>
<td>0.5%</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td>De-tin Ball</td>
<td>13.6%</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>Industrial Bundle</td>
<td>4.9%</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>Multi Tin Bundles</td>
<td>1.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>HBI</td>
<td>3.3%</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td>Burned Heavy</td>
<td>5.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burned Slabs</td>
<td>5.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burned Turkish</td>
<td>2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corp Ends</td>
<td>2.9%</td>
<td>2.3%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Monoflo Steel</td>
<td>0.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pict Cast Iron</td>
<td>1.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep Coils</td>
<td>10.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Pit</td>
<td>8.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slabs</td>
<td>1.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinter</td>
<td>3.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 Bundle, 64%</td>
<td>4.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milled Mill</td>
<td>1.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild Pig Iron</td>
<td>0.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Sulphur Iron</td>
<td>1.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Carbon Iron</td>
<td>0.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kies</td>
<td>2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter company</td>
<td>0.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost Savings

![Cost Comparison Chart](chart.png)

1. Plate and structural
بخش گزارش

پیک برنامه بهینه سازی به کارگران خرید و تولید برای اتخاذ تصمیم آگاهانه و با توجه به نتیجه نهایی خواهد داشت. بهینه سازی باعث برای ارزیابی بازار نسبت به برنامه تولید به طور منظم با توجه به نوسانات بازار قراضه، تغییرات در نتایج تولید، ترکیب مهارت مصرفات لیست و ارائه بسته ترکیب شیمیایی فولاد مورد استفاده قرار گیرد.

مورد استفاده قرار گیرد در کارگرانهای تولید فولاد با BOF. بهینه سازی کردن سریع شارژ و دریافت ترکیب شیمیایی جدید مذاب یک کیفیت است. هر برنامه بهینه سازی با ثابتیت متمایزی به قراضه که در نظر گرفت (شارژ با چدن مذاب) و قادر به پیشین ترکیب شیمیایی محدوده‌های خاص کارخانه باشد. این کار حصول ترکیب شیمیایی مورد نیاز محصول در بازار را بهتر کنند و به مشتریان بهینه سازی کرده تأثیر جریه و توقف صرفه جویی می‌زند. منابع کاهش داده شده می‌توانند صرفه جویی در هزینه را به فولاد مذاب بیشتر کنند. برنامه تولیدی مذاب با توجه به هزینه احتیاجات مختلف صرفه جویی در هزینه را به وسیله ترکیب شیمیایی بیشتر می‌کند. ترکیب شبیه سازی تولید فولاد کم هزینه مهم است.
مصاحبه‌ای با مدیرعامل شرکت فولاد ناب تبریز

در این شماره از مجله مصاحبه‌ای با مدیرعامل شرکت فولاد ناب تبریز، جناب آقای مهندس کریم رحمی انجام شده است که در ادامه می‌خواند:

از محصولات این شرکت است. این شرکت با تولید محصولات متنوعی مانند لیست و ناولانی و ناولانی در طیف وسیعی از ابعاد با کیفیت منطبق استانداردهای ملی و بین‌المللی توانسته است. این شرکت در سال 1382 در شهر تبریز به تخت رسیده و تولید آزمایش آن در نشانه سال 1384 آغاز شده است. در سال 1389 طرح توسه این شرکت به نام مجتمع نورد ناب آذری‌اوان به بهره‌برداری رسید.

تولیدات این شرکت در سلاطین صنعت، بری و لیستی با کاربرد دارد. سپارای از مقاطع و سایه‌های تولید شده در این شرکت احترازی بوده و در ایران تولید کننده دیگری ندارد. همچنین به دلیل کیفیت مناسب محصولات آن در مقایسه با دیگر تولیدات داخلی و خارجی دارای جایگاه و رتبه ای در بازار آهن و ناولانی کشور است.

به عنوان یک تولید کننده موفقیت خود را در شرایط بحرانی مانند بازار وابسته به چه عوامل و شرایطی می‌دانید؟

شرکت برای بهبود نرخ و شرایط بحرانی بازار در جنده زمانه برنامه ریزی و اقدام نمود که به دلیل انتخابات از مدیران بسیون خط تولید و ارتقاء کیفیت محصولات تولیدی (کاهش قیمت

* درباره شرکت فولاد ناب تبریز و پیشنهاد برای خوانندگان مجله پیام فولاد توضیحاتی برای چاپ

- شرکت فولاد ناب تبریز در زمینه به ساسح 17 هکتار در 35 کیلومتری غرب تبریز و در شهر مذهبی شهید سالیمی واقع شده است. این شرکت در سال 1382 در شهر تبریز به تخت رسیده و تولید آزمایش آن در نشانه سال 1384 آغاز شده است. در سال 1389 طرح توسه این شرکت به نام مجتمع نورد ناب آذری‌اوان به بهره‌برداری رسید.

- این شرکت با 235 نفر پرست در دو شفت کاری و با ظرفیت تولید اساسي 445/000 تن در سال یکی از بزرگترین تولید کننده مقاطع فولاد ساختمانی در بخش خصوصی شامل انواع تیز و ناولانی و ناولانی در کشور محصول می‌گردد که در آن انواع مقاطع فولاد ساختمانی شامل طیف وسیعی از تیزی (300-800 میلیمتر)، ناولانی (160-800 میلیمتر) و ناولانی (120-100 میلیمتر) براساس استانداردهای ملی و بین‌المللی تولید می‌شود.

* به نظر شما چه عواملی طالب‌ها به بیشتر شرکت فولاد ناب تبریز کمک کردند؟

- شماری از شرکت‌ها با تولید انواع کیفیتی ناب از که نشان دهنده اهمیت کیفیتی و به طبع آن اطمینان و رضایتمدی مشتری این شرکت می‌باشد.

* به نظر شما چه عواملی طالب‌ها به بیشتر شرکت فولاد ناب تبریز کمک کردند؟

- شماری از شرکت‌ها با تولید انواع کیفیتی ناب از که نشان دهنده اهمیت کیفیتی و به طبع آن اطمینان و رضایتمدی مشتری این شرکت می‌باشد.
شکست فولاد ناب تریز به منظور بهره‌برداری از توأم‌نامه‌های اقتصادی و صنعتی دو کشور ایران و ترکیه با سرمایه‌گذاری ملت‌های خارجی، باید به طول بیش از یک گذشته فعالیت‌های صنعتی و سرمایه‌گذاری بررسی شود. این شکست در سال‌های گذشته با وجود رکود و افت وقیحانه شکسپر، این شکست مدتی به سرمایه‌گذاری بر روی نوسازی خط تولید نمود. نتیجه‌گیری‌های اقتصادی و سرمایه‌گذاری در آهن از سوی متقاضیان با این‌نگ‌هایی می‌باشد که در بخش‌های صنعت ساختمان و مصرف فولاد در کشور بخشی از بازار فولاد ساختمانی شده است. این کاهش در بخش سهم بخش‌های صنعتی دیگر مانند ازجو و فرآیندها مربوط به نرخ ارزش داده شد.

الا که بدرکرسی این است که این شکست به تولید بخشی از ۵۵ سایز مختلف از مقاوعت‌های انتقالی و ناکارآمدی و نیز امکان‌های دسترسی توانایی و کمکات و همکاری با بازار فولاد ناب گزارش می‌شود. این شکست که از سوی بازارهای دیگر و ناامنی و ناآرامی در نسل‌ها، تحولات و گسترش ناامنی و ناآرامی در بخش‌های دیگر جهان تأمین شده است، باعث شده که رشد و پیشرفت در مصرف فولاد در دو مقطع فولاد ساختمانی در ایران می‌باشد.

با توجه به بروز تحولاتی در بخش فولاد صنعتی ایران، نیاز به حل مشکلات آن تاپی به سازی در رشد اقتصادی و صنعتی کشور دارد. به‌طور کلی مسئولیت‌های انرژی‌های داخلی و خارجی این صنعت را از طریق پیشرفت‌های جدیدتر برای مصرف فولاد دانسته است.

در سطح داخل کشور، توانایی بررسی و رفع مشکلات صنعت فولاد در داخل، یکی از نقاط قوت به‌عنوان پیشرفت‌های عمیق در اقتصاد و بخش‌هایی از بخش‌های صنعتی از برخی از نقاط اقتصادی و سیاسی عهده‌دار و حاصل‌شده است. به‌طور کلی مسئولیت‌های انرژی‌های داخلی و خارجی این صنعت را از طریق پیشرفت‌های جهانی و کشوری قبلاً برای مصرف فولاد دانسته است.

در سطح داخل کشور، توانایی بررسی و رفع مشکلات صنعت فولاد در داخل، یکی از نقاط قوت به‌عنوان پیشرفت‌های عمیق در اقتصاد و بخش‌هایی از بخش‌های صنعتی از برخی از نقاط اقتصادی و سیاسی عهده‌دار و حاصل‌شده است. به‌طور کلی مسئولیت‌های انرژی‌های داخلی و خارجی این صنعت را از طریق پیشرفت‌های جهانی و کشوری قبلاً برای مصرف فولاد دانسته است.

با توجه به اینکه صنعت فولاد از سنین کلیدی ایران به حساب می‌آید و بررسی و رفع مشکلات آن تاپی به سازی در رشد اقتصادی و صنعتی کشور دارد، مهم‌ترین مسئولیت‌های داخلی و خارجی این صنعت را از طریق پیشرفت‌های جدیدتر برای مصرف فولاد دانسته است.

با توجه به بروز تحولاتی در بخش فولاد صنعتی ایران، نیاز به حل مشکلات آن تاپی به سازی در رشد اقتصادی و صنعتی کشور دارد. به‌طور کلی مسئولیت‌های انرژی‌های داخلی و خارجی این صنعت را از طریق پیشرفت‌های جدیدتر برای مصرف فولاد دانسته است.

با توجه به بروز تحولاتی در بخش فولاد صنعتی ایران، نیاز به حل مشکلات آن تاپی به سازی در رشد اقتصادی و صنعتی کشور دارد. به‌طور کلی مسئولیت‌های انرژی‌های داخلی و خارجی این صنعت را از طریق پیشرفت‌های جدیدتر برای مصرف فولاد دانسته است.
سال 16 تولید جهانی فولاد خام در حدود 1626 میلیون تن بود که نسبت به سال 2015 فقط حدود 4 میلیون تن افزایش داشته است. نرخ رشد شرکت جهانی فولاد که از سال 2010 تا 2013 به سال 2011 4/5 درصد و از سال 2015 تا 2018 2/5 درصد در سال بوده است. این نتایج محدوده کاهش یافته است.

به نظر می‌رسد در دهه آینده رشد تولید جهانی فولاد کمی خواهد بود و همگام به عبارت دیگر، کنترل کننده فولاد به جای افزایش ظرفیت‌های تولید فولاد در رسانه‌های بهره‌برداری و نوع بخشیدن به محصولات فولادی، افزایش ضربه بهبودی از ظرفیت‌های موجود در دبی تولید محصولاتی از ارزش افزوده بیشتر خواهد بود.

ب و نظر شما بار مانند مؤثر بر تغییرات قیمت فولاد در سال 17 شمار چه مواردی است؟

بازار فولاد ایران از دو جنبه داخلی و خارجی تحت تأثیر عوامل گوناگون قرار دارد. بازار خارجی از این جنبه از اثرات اقتصادی مستقیماً و نیز اثرات اقتصادی مستقیماً است. به بخشی از مواد اولیه و قطعات بدنی و محصولات بین‌المللی اضافه می‌شود. بین تریب رشد بیشتر نیت، نگرش برآورد، قیمت جهانی فولاد، قیمت مواد اولیه و حالت‌های اقتصادی و مالیاتی دنده‌ها (مانند تحریم) می‌تواند بر غرض و نفیضاً و در نتیجه قیمت تولیدات اثر بگذارد. از جنبه داخلی بیش محدودیت‌های ارزی کنترل کننده فولاد است. از جهت اینکه می‌توان به تعیین قیمت واردات، عرضه محصولات فولاد توسعه تراز‌های برتر و برای اولیه نرخ تولید عرضه، در تولید محصولات فولاد از جمله پدیده‌های موجود توجه شده است.

عمل‌کردن شرکت فولاد ناب در بهبود صادرات چگونه از نظر صادراتی می‌کنی؟

خوشبختی‌هایی که نه‌امکان فولاد ناب را پیش‌بینی می‌کند، این را رشد تولید علی‌رغم بحران‌های اقتصادی در جهان خواهد ولی برای صادرات، افزایش در حالت‌های داخلی و خارجی نرخ تولید خود را به‌جای می‌گذارد. این اقدامات در حال حاضر نتایج خوبی را نشان نداده، ولی با توجه به افزایش نرخ تولید خود، فرصت‌های بازار در این زمینه وجود دارد.

این شرکت بر پایه 5 ساله‌ای برای افزایش صادرات فولاد در این زمینه به توجه که صادرات می‌تواند واکنش بی‌پایداری در بورس، باید تا سال آینده هدف 40% تحقق یابد. بازارهای هدف کشورهای
پس از مدرنیزاسیون خط تولید و بهبود ماکوم کفتیت تولیدات، هدف مدیریت شرکت افزایش نوع تولیدی و تغییر ناکاراییهای بازار و صمنع دکتر به سازه‌های ناموجود ماند

نواحی دکتر و تیپیستی آنها مستقر در اتاق آهن و فولاد است و تیپیستی 300 میلیمتر و تیپیستی 200 ول میلیوای طیشرتی و شیشه‌زیره‌ای های

شرکت قرار دارد.

به طور مثال با نوسازی و اصلاحات انجام شده این شرکت توانایی تولید تیپیستی مسک به اساس استاندارد ملی ایران را با اساس درخواست مشتریان برخوردار است. در بخش نرم افزاری نیز شرکت با چلید و تیپیست آندازه‌ای ERP شرکت ماکسوساف سی در پی‌بازه نمونه سیستم اطلالات مدیریت شرکت نموده است.

بنظر شما چه روشی می‌توان در ایران بجای خرید ناواری در خود ایران تولید کنند؟ فناوری‌های جدید چیست؟

بومی سازی در دو هد به بخش بالادستی و بخش پایین دستی، در صنعت فولاد کشور هم توسعه یافت خصوصی و هم به بخش دولتی با علتی در حال پیگیری است و به تدریج از وابستگی صنعت فولاد به تأمینات خارجی کاهش می‌یابد. نسخه فولاد به تأمینات قانونی گذشته، کنترل و مدیریت انجمن حکم مشابه انجام شده است. خوشبختانه انجمن ام فولاد از تأمینات انجمن‌های دانش‌آموزی و دانش‌پژوهان مستقل است و آنها در تولید و نشر اسناد فولاد دارند. صنعتی امکان‌پذیر است.

آیا آمیزندگی پردازش‌های گرمی، جهان‌سازی، شور و قطعات

برقرار گردد اولین تولیدکننده فولاد به سمت تولید و تأمین داخلی مواد اولیه و قطعات بکار می‌روی می‌گردد و هم اکنون به شکل زیادی از این اقلام در داخل کشور تولید می‌شود. در شرکت فولاد نامزد تنی از این تولید صورت گرفته و تا حد مکمل از این با تأمین کننده‌های خارجی کانتینگ گردیده است.

همچنین می‌باشد خارج می‌باشد. شرکت دارای کارگاه‌های ایتر و ساختمان‌های بسیار مهم و پیشرفته است.

آیا در شرکت شما برنامه‌ای جهت استفاده و به روز رساندن آخرین استانداردهای فناوری در تولید فولاد هست و اگر به آن را تشریح فرمایید؟
سپری‌سازی فولاد در میزان تولید نان تبریز می‌باشد. چه اقداماتی برای
تحقیق این افکار مهم صورت گرفته است و چه
اهداف دیگری می‌باشد?

سپری‌سازی فولاد به‌طور عادی به‌طور مستمر حاصل می‌باشد. با این
حال آنها دارای فرآیندی و راه‌هایی هستند که به آنها می‌توان

در پایان ضمن قدردانی و آرزوزی موقتی اگر
نقطه نظر دیگری دارید که لازم می‌دانید به اطلاع
خواندن کان‌مله پایم فولاد این انجمن بررسی آن را
اعلام فرمایید؟

از شما و سردار محتشم فضانامه پایم فولاد تقدیر و تشکر
می‌نمایم. نظرات ویژه‌ای و گران‌ מתقی پیام فولاد نشان
پیام‌های پیام و پیام‌های مطرح در رسانه و دانشگاه
طلبی ارتباط بین صنعت و دانشگاه و کاربردی کردن تحقیقات
و پژوهش‌های انجام شده در زمینه صنعت فولاد دارد.

* با توجه به اینکه شرکت فولاد نان تبریز می‌باشد تبریز می‌باشد

** در پایان ضمن قدردانی و آرزوزی موقتی اگر

نقطه نظر دیگری دارید که لازم می‌دانید به اطلاع
خواندن کان‌مله پایم فولاد این انجمن بررسی آن را
اعلام فرمایید؟

از شما و سردار محتشم فضانامه پایم فولاد تقدیر و تشکر
می‌نمایم. نظرات ویژه‌ای و گران‌ متقی پیام فولاد نشان
پیام‌های پیام و پیام‌های مطرح در رسانه و دانشگاه
طلبی ارتباط بین صنعت و دانشگاه و کاربردی کردن تحقیقات
و پژوهش‌های انجام شده در زمینه صنعت فولاد دارد.

* با توجه به اینکه شرکت فولاد نان تبریز می‌باشد تبریز می‌باشد

** در پایان ضمن قدردانی و آرزوزی موقتی اگر

نقطه نظر دیگری دارید که لازم می‌دانید به اطلاع
خواندن کان‌مله پایم فولاد این انجمن بررسی آن را
اعلام فرمایید؟

از شما و سردار محتشم فضانامه پایم فولاد تقدیر و تشکر
می‌نمایم. نظرات ویژه‌ای و گران‌ متقی پیام فولاد نشان
پیام‌های پیام و پیام‌های مطرح در رسانه و دانشگاه
طلبی ارتباط بین صنعت و دانشگاه و کاربردی کردن تحقیقات
و پژوهش‌های انجام شده در زمینه صنعت فولاد دارد.

* با توجه به اینکه شرکت فولاد نان تبریز می‌باشد تبریز می‌باشد

** در پایان ضمن قدردانی و آرزوزی موقتی اگر

نقطه نظر دیگری دارید که لازم می‌دانید به اطلاع
خواندن کان‌مله پایم فولاد این انجمن بررسی آن را
اعلام فرمایید؟

از شما و سردار محتشم فضانامه پایم فولاد تقدیر و تشکر
می‌نمایم. نظرات ویژه‌ای و گران‌ متقی پیام فولاد نشان
پیام‌های پیام و پیام‌های مطرح در رسانه و دانشگاه
طلبی ارتباط بین صنعت و دانشگاه و کاربردی کردن تحقیقات
و پژوهش‌های انجام شده در زمینه صنعت فولاد دارد.
کمیته آموزش انجمن آهن و فولاد ایران به منظور شناخت هرچه بیشتر نیازها و استعدادهای واحدی صنعتی و گسترش ام آموزش اماده‌گی خود را در بررسی دوره‌های آموزشی – کاربردی در زمینه‌های مختلف آهن و فولاد اعلام می‌دارد. لذا از کلیه مسئولان و صاحبان صنایع که علاقه‌مند به برگزاری دوره‌های آموزشی هستند این ارائه شده و با دوره‌های آموزشی خاص دیگری که مورد نیاز آن مؤسسه است تا این گروه از طریق تکمیل فرم زیر این انجمن را مطابق فرم آموزشی خاص انجمن تایید و در نظر بگیرد. بدنی این انجمن و یا مؤسسه‌ای که مورد نیاز آن مؤسسه است تا این گروه از طریق تکمیل فرم زیر این انجمن را مطابق فرم آموزشی خاص انجمن تایید و در نظر بگیرد.

فرم درخواست برگزاری دوره‌های آموزشی توسط انجمن آهن و فولاد ایران

<table>
<thead>
<tr>
<th>رتیف</th>
<th>عنوان دوره</th>
<th>نام استاد</th>
<th>مدت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>تکنولوژی تولید فولادهای کیفی</td>
<td>مهندس جولازاده</td>
<td>3 روزه</td>
</tr>
<tr>
<td>2</td>
<td>فرایند تولید چدن در کوره بلند</td>
<td>مهندس جولازاده</td>
<td>3 روزه</td>
</tr>
<tr>
<td>3</td>
<td>روش های بالا برد بردن بهره وی و صرفه جویی انرژی در کوره بلند</td>
<td>مهندس جولازاده</td>
<td>3 روزه</td>
</tr>
<tr>
<td>4</td>
<td>فرایند تولید کک به روش پایدار مواد شیمیایی</td>
<td>مهندس جولازاده</td>
<td>4 روزه</td>
</tr>
<tr>
<td>5</td>
<td>فرایند تولید فولاد به روش گاز و الکتریکی</td>
<td>مهندس جولازاده</td>
<td>3 روزه</td>
</tr>
<tr>
<td>6</td>
<td>شاخص‌های پیاده‌ریزی در صنایع فولاد</td>
<td>مهندس جولازاده</td>
<td>1 روزه</td>
</tr>
<tr>
<td>7</td>
<td>بهینه‌سازی مصرف انرژی در صنایع فولاد</td>
<td>مهندس جولازاده</td>
<td>3 روزه</td>
</tr>
<tr>
<td>8</td>
<td>اکولوژی صنعتی و ملاحظات زیست محیطی در صنایع فولاد</td>
<td>دکتر میرفاضل</td>
<td>1 روزه</td>
</tr>
<tr>
<td>9</td>
<td>مللوروزی فرصت و انجام ریخته‌گری مداوم</td>
<td>دکتر علیزاده</td>
<td>3 روزه</td>
</tr>
<tr>
<td>10</td>
<td>فرصت انجماد در ریخته‌گری مداوم</td>
<td>دکتر علیزاده</td>
<td>3 روزه</td>
</tr>
<tr>
<td>11</td>
<td>ایمنی و بهداشت (به استفاده مواد شیمیایی)</td>
<td>دکتر رضایی</td>
<td>1 روزه</td>
</tr>
<tr>
<td>رشته درسی</td>
<td>انواع دوره</td>
<td>نام استاد</td>
<td>مدت (روز)</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>سامانه‌های اتوماسیون</td>
<td>مهندس کویانفرد</td>
<td>61</td>
<td>15</td>
</tr>
<tr>
<td>سامانه‌های اتوماسیون</td>
<td>مهندس احمد نوکل</td>
<td>62</td>
<td>30</td>
</tr>
<tr>
<td>ترمودیامیک کوههای قوس از جهت رفتار عناصر آبایی</td>
<td>دکتر ترانجی</td>
<td>63</td>
<td>25</td>
</tr>
<tr>
<td>ترمودیامیک کوههای قوس</td>
<td>دکتر امینی</td>
<td>64</td>
<td>20</td>
</tr>
<tr>
<td>آشنا با ریشه و نورد فولادهای الکتریکی</td>
<td>دکتر حسنی</td>
<td>65</td>
<td>29</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>66</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>67</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>69</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>71</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>72</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>73</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>74</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>75</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>76</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>77</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>78</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>79</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>81</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>83</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>84</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>85</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>86</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>87</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>88</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>89</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>91</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>92</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>93</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>94</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>95</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>96</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>97</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>98</td>
<td>20</td>
</tr>
<tr>
<td>ساخت و عوامل تزریق‌های قدرت</td>
<td>دکتر معلم</td>
<td>99</td>
<td>17</td>
</tr>
<tr>
<td>عصب جایگزینی و انتخاب بهینه موثرهای الکتریکی</td>
<td>دکتر معلم</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>دوره تخصصی برچ کورههای قوس الکتریکی</td>
<td>دکتر حسنی</td>
<td>101</td>
<td>20</td>
</tr>
<tr>
<td>بند</td>
<td>نام استاد</td>
<td>عنوان دوره</td>
<td>رده</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>دکتر رضاپیان</td>
<td>دوره تخصصی فولادهای HSLA</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>دکتر دکری</td>
<td>شناخت و ارزیابی عیوب ناشی از فرآیندهای دعشه</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>دکتر اعلامی</td>
<td>فرآیند ریخته‌گری دمای تخلخل نازک</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>دکتر اشرفی زاده</td>
<td>پوشش دهی</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>دکتر اشرفی زاده</td>
<td>تجربه قطعات در صنعت و تحلیل شکست (Failure Analysis)</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>دکتر اشرفی زاده</td>
<td>خوردهگی بوی‌های صنعتی، غلت و روشهای چل‌گیری از خوردهگی</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>دکتر اشرفی زاده</td>
<td>آشنا با استاندارد درختنه‌های داخلی و بررسی علل تجربه درختنه‌های صنعتی</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>دکتر اشرفی زاده</td>
<td>آشنا با استاندارد درختنه‌های داخلی و بررسی علل تجربه درختنه‌های صنعتی</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>دکتر اشرفی زاده</td>
<td>کلید فولاد و اطلاعات فولادهای استاندارد</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>مهندس حسین نمازی</td>
<td>طراحی و انتخاب مواد مقاوم به خوردهگی</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>مهندس حسین نمازی</td>
<td>پازارده‌های خوردهگی</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>مهندس حسین نمازی</td>
<td>آزمون های خوردهگی</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>مهندس حسین نمازی</td>
<td>استخراج ال اینی</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>مهندس حسین نمازی</td>
<td>شناخت درایوی‌های AC و DC</td>
<td>52</td>
</tr>
<tr>
<td>15</td>
<td>مهندس حسین نمازی</td>
<td>آموزش نرم‌افزار Catia</td>
<td>53</td>
</tr>
<tr>
<td>16</td>
<td>مهندس حسین نمازی</td>
<td>نرم‌افزار Digsilent</td>
<td>54</td>
</tr>
<tr>
<td>17</td>
<td>مهندس حسین نمازی</td>
<td>ارزیابی الکترونیک</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>مهندس حسین نمازی</td>
<td>آشنا با انواع ابزار، روش‌های آنالوگ و دیجیتال</td>
<td>56</td>
</tr>
<tr>
<td>19</td>
<td>مهندس حسین نمازی</td>
<td>فرآیندهای صرفه جویی انرژی در کوره‌های الکترونیک</td>
<td>57</td>
</tr>
<tr>
<td>20</td>
<td>مهندس حسین نمازی</td>
<td>تکنولوژی تولید فولادهای آیالیزی در کوره‌های الکترونیک</td>
<td>58</td>
</tr>
<tr>
<td>21</td>
<td>مهندس حسین نمازی</td>
<td>تحولات و توسعه در فرآیند فولاد سازی کوره‌های الکترونیک</td>
<td>59</td>
</tr>
<tr>
<td>22</td>
<td>مهندس حسین نمازی</td>
<td>فرآیند فولادسازی در کوره‌ها</td>
<td>60</td>
</tr>
<tr>
<td>23</td>
<td>مهندس حسین نمازی</td>
<td>شبیه‌سازی ریخته‌گری</td>
<td>61</td>
</tr>
<tr>
<td>24</td>
<td>مهندس حسین نمازی</td>
<td>تزیین سوخته‌های الکتریکی در کوره‌های رس</td>
<td>62</td>
</tr>
<tr>
<td>25</td>
<td>مهندس حسین نمازی</td>
<td>فرآیندهای صرفه‌جویی انرژی در کوره‌های الکتریکی</td>
<td>63</td>
</tr>
<tr>
<td>26</td>
<td>مهندس حسین نمازی</td>
<td>فرآیند تولید کک به روش بازیافت حرارتی</td>
<td>64</td>
</tr>
<tr>
<td>27</td>
<td>مهندس حسین نمازی</td>
<td>فرآیند تولید فولاد به روش کوره‌های الکتریکی</td>
<td>65</td>
</tr>
<tr>
<td>مبلغ (ریال)</td>
<td>تاریخ انتشار</td>
<td>کرداورنده</td>
<td>عنوان</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>280/000</td>
<td>مهر 1375</td>
<td>درشتکده مهندسی مواد دانشگاه صنعتی اصفهان</td>
<td>مجموعه مقالات سمپوزیوم فولاد 75</td>
</tr>
<tr>
<td>280/000</td>
<td>آذر 1378</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 78</td>
</tr>
<tr>
<td>280/000</td>
<td>بهمن 1379</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 79</td>
</tr>
<tr>
<td>280/000</td>
<td>بهمن 1380</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 80</td>
</tr>
<tr>
<td>280/000</td>
<td>بهمن 1381</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 81</td>
</tr>
<tr>
<td>280/000</td>
<td>بهمن 1382</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 82</td>
</tr>
<tr>
<td>280/000</td>
<td>بهمن 1383</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 83</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1384</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 84</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1385</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 85</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1386</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 86</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1387</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 87</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1388</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 88</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1389</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 89</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1390</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 90</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1391</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 91</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1392</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 92</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1393</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 93</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1394</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 94</td>
</tr>
<tr>
<td>350/000</td>
<td>اسفند 1395</td>
<td>انجمن آهن و فولاد ایران</td>
<td>مجموعه مقالات سمپوزیوم فولاد 95</td>
</tr>
<tr>
<td>شماره</td>
<td>عنوان</td>
<td>تاریخ انتشار</td>
<td>گردآورنده</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>21</td>
<td>Introduction to the Economics of Structural Steel Work (2001)</td>
<td>The Southern African Institute of Steel Construction</td>
<td>زمستان 82</td>
</tr>
<tr>
<td>23</td>
<td>Advanced High Strength Steel (AHSS) Application Guidelines, Version 3</td>
<td>International Iron & Steel Institute</td>
<td>اسفند 87</td>
</tr>
<tr>
<td>24</td>
<td>كتاب فولاد سازی ثانویه</td>
<td>مهندس محمد حسین نشاطی</td>
<td>شهریور ماه 88</td>
</tr>
<tr>
<td>25</td>
<td>كتاب فرهنگ جامع مواد</td>
<td>مهندس پرویز فرهنگ</td>
<td>شهریور ماه 88</td>
</tr>
<tr>
<td>26</td>
<td>فصلنامه علمی-خبری پیام فولاد از شماره 61</td>
<td>اطلاعیه انجمن اهن و فولاد ایران</td>
<td>اسفند 90</td>
</tr>
<tr>
<td>27</td>
<td>فصلنامه علمی-خبری پیام فولاد از شماره 62</td>
<td>اطلاعیه انجمن اهن و فولاد ایران</td>
<td>بهار 92</td>
</tr>
<tr>
<td>28</td>
<td>مجله علمی-پژوهشی بین‌المللی انجمن اهن و فولاد ایران (International Journal of Iron & Steel Society of Iran)</td>
<td>اطلاعیه انجمن اهن و فولاد ایران</td>
<td>اسفند 89</td>
</tr>
<tr>
<td>29</td>
<td>كتاب راهنمای انتخاب و کاربرد فولاد از</td>
<td>مهندس محمد حسین نشاطی</td>
<td>اسفند 90</td>
</tr>
<tr>
<td>30</td>
<td>كتاب مرجع فولاد</td>
<td>مهندس محمد حسین نشاطی</td>
<td>آذر ماه 89</td>
</tr>
<tr>
<td>31</td>
<td>كتاب مرجع فولاد</td>
<td>مهندس محمد حسین نشاطی</td>
<td>آذر ماه 90</td>
</tr>
<tr>
<td>32</td>
<td>كتاب مرجع فولاد</td>
<td>مهندس محمد حسین نشاطی</td>
<td>آذر ماه 91</td>
</tr>
<tr>
<td>33</td>
<td>كتاب مرجع فولاد</td>
<td>مهندس محمد حسین نشاطی</td>
<td>آذر ماه 92</td>
</tr>
<tr>
<td>34</td>
<td>كتاب مرجع فولاد</td>
<td>مهندس محمد حسین نشاطی</td>
<td>آذر ماه 93</td>
</tr>
<tr>
<td>35</td>
<td>كتاب مرجع فولاد</td>
<td>مهندس محمد حسین نشاطی</td>
<td>آذر ماه 94</td>
</tr>
<tr>
<td>36</td>
<td>كتاب مرجع فولاد</td>
<td>مهندس محمد حسین نشاطی</td>
<td>آذر ماه 95</td>
</tr>
</tbody>
</table>

در ضمن هزینه پست معرفی به مبلغ فوق اضافه خواهد شد. جهت کسب اطلاعات بیشتر با شماره تلفن 6212-214719323403 دفتر مرکزی انجمن اهن و فولاد ایران تماس حاصل نمایید.
عضویت

برای
لازم
مدارک
- برگ درخواست عضویت تکمیل شده
- 2×3 فتوکپی آخرین مدرک تحصیلی (برای دانشجویان ارائه کننده کارت دانشجویی کافی است.) + دو قطعه عکس
- 300/000 ریال، برای دانشجویان
- 800/000 ریال، برای اعضای حقیقی
- 7/000/000 ریال (برای مؤسسات حقوقي وابسته)

- فیش بانکی به مبلغ (برای مؤسسات حقوقی وابسته 300/000/000 ریال، برای دانشجویان 400/000/000 ریال) به حساب شماره 203832702120 باشک ملی ایران شمع دانشگاه صنعتی اصفهان (کد شعبه 3187) بانک ایران و فولاد ایران.

- ارسال فیش وارزی از طریق (فکس: 33233224، پست و با تحويل حضوری)

<table>
<thead>
<tr>
<th>تاریخ انضمام عضویت</th>
<th>تاریخ سال عضویت</th>
</tr>
</thead>
<tbody>
<tr>
<td>اعضای:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام</th>
<th>نام خانوادگی</th>
<th>تاریخ تولد</th>
<th>شماره شناسنامه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>آدرس محل کار</th>
<th>کد پستی</th>
<th>نشانی محل کار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>آدرس محل مسکونی</th>
<th>کد پستی</th>
<th>تلفن همراه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
دانشگاه‌های، متخصصین، پیوندهای بیشتر هرچه تقویت و اطلاع‌رسانی منظور به کشور فولاد پژوهشی علمی-مجله فناوری، و اتحادیه‌های اجتماعی، پژوهشگران و کشور ایران

نماید می‌منتشر می‌نماید.

به زبان انگلیسی بر اساس راهنمای موجود به آدرس زیر ارسال نمایند.

International Journal of Iron & Steel Society of Iran (Int. J. of ISSI)

پژوهش آنالیزهاى فیزیکی و

- اصول، تئوری، مکانیزمها و کینتیک فرآیندهای دمایی و انجماد

- ریخته‌نیازهای فولادسازی

- آهن‌سازی

- عمليات سطحی و خوردگی فولادها

- نوسازی، صنایع فولاد و ارتباطات اجتماعی

آدرس دیپارچه مجله: اصفهان، بلوار دانشگاه صنعتی اصفهان، شهرک علمی تحقیقاتی اصفهان، میدان فن آوری (شیخ بهایی)، خیابان ۲، خیابان ۱۵، خیابان ۱۴، خیابان ۱۴، به سمت ساختمان فن آفرینی شماره ۱، ساختمان انجمن آهن و فولاد ایران

دیپارچه مجله بین المللی انجمن آهن و فولاد ایران

تلفن: ۳۲۶-۳۲۴۲۳۱۲۱-۳۲۴۲۳۱۲۱-۳۲۴۲۳۱۲۱ (۲۳۱)، بانک سرمایه: ۳۲۴۲۳۱۲۱-۳۲۴۲۳۱۲۱-۳۲۴۲۳۱۲۱ (۲۳۱)

E-mail: journal@issiran.com

website: journal.issiran.com

پرداخت و پرداخت با شناسه‌های علمی و مکانیزم‌ها و کینتیک فرآیندهای دمایی و انجماد

- ریخته‌نیازهای فولادسازی

- آهن‌سازی

- عمليات سطحی و خوردگی فولادها

- نوسازی

نماشگاه مقاله‌برای مجله بین المللی انجمن آهن و فولاد ایران

انجمن آهن و فولاد ایران با هدف تخصصی تشریح پژوهشهای علمی و تحقیقاتی در زمینه‌های آهن و فولاد، به منظور اطلاع‌رسانی و تقویت هرچه بیشتر بیان‌دهنده متخصصین، اندیشمندان، دانشگاه‌های و پژوهشگران ملی و بین‌المللی با کم مجوز از وزارت علوم، تحقیقات و فناوری، مجله علمی-پژوهشی بین‌المللی را با عنوان:

International Journal of Iron & Steel Society of Iran (Int. J. of ISSI)
GUIDE FOR PREPARATION OF MANUSCRIPT

International Journal of Iron & Steel Society of Iran (IJISSI) is published semiannually by Iron and Steel Society of Iran (ISSI) with collaboration of Isfahan University of Technology (IUT). Original contributions are invited from worldwide ISSI members and non-members.

1. Submission of manuscript: This instruction gives you guidelines for preparing papers for IJISSI. Manuscripts should not be submitted if they have already been published or accepted for publication elsewhere. The full text of the paper including text, references, list of captions, tables, and figures should be submitted online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor’s decision and requests for revision, takes place by e-mail removing the need for a paper trail.

2. Category
i) Research paper (maximum of ten printed pages): An original article that presents a significant extension of knowledge or understanding and is written in such a way that qualified workers can replicate the key elements on the basis of the information given.
ii) Review: An article of an extensive survey on one particular subject, in which information already published is compiled, analyzed and discussed. Reviews are normally published by invitation. Proposals of suitable subjects by prospective authors are welcome.
iii) Research note: (maximum of three printed pages): (a) An article on a new finding or interesting aspect of an ongoing study which merits prompt preliminary publication in condensed form, a medium for the presentation of (b) disclosure of new research and techniques, (c) topics, opinions or proposals of interest to the readers and (d) criticisms or additional proofs and interpretations in connection with articles previously published in the society journals.

3. Language: Manuscripts should be written in clear, concise and grammatically correct English so that they are intelligible to the professional reader who is not a specialist in any particular field. Manuscripts that do not conform to these requirements and the following manuscript format may be returned to the author prior to review for correction. The full form of any abbreviation or acronym should be given in the text when the term is first used.

4. Units: Use of SI units is mandatory. Journal style is to use the form S m⁻¹, A m⁻², W m⁻¹ K⁻¹, not S/m, A/m², W/m.K.

5. Style of manuscript: It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. The manuscripts should be submitted in double-spaced typing, 12 points Times New Roman font, on consecutively numbered A4 pages of uniform size with 3.0 cm margin on the left and 2.0 cm margins on top, bottom and right. The manuscript must be presented in the order: (1) title page, (2) abstract and key words, (3) text, (4) references, (5) appendices, and (6) list of captions, each of which should start on a new page. All papers should be limited to 20 pages.

Essential title page information
Title: Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
Author names and affiliations: Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author.
Corresponding author: Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address.
Present/permanent address: If an author has moved since the work described in the article was done, or was visiting at the time, a “Present address” (or “Permanent address”) may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract: An abstract must state briefly and clearly the main object, scope and findings of the work within 250 words. Be sure to define all symbols used in the abstract, and do not cite references in this section.

Keywords: Between three and six keywords should be provided below the Abstract to assist with indexing of the article. These should not duplicate key words from the title.

Subdivision-numbered sections: Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to “the text”. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction: This section should include sufficient background information to set the work in context. The aims of the manuscript should be clearly stated. The introduction should not contain either findings or conclusions.

Materials and methods: This should be concise but provide sufficient detail to allow the work to be repeated by others.

Tables: Tables should be numbered consecutively in accordance with their appearance in the text and referred as, for example, ‘Table 1’. Tables must not appear in the text but should be prepared on separate sheets. They must have captions and simple column headings. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article. Captions should be 10 pt, and centered. Tables should be self-contained and complement, but not duplicate, information contained in the text.

Figures: All graphs, charts, drawings, diagrams, and photographs are to be referred to as Figures and should be numbered consecutively in the order that they are cited in the text. Figures should be cited in a single sequence throughout the text as ‘Fig. 1’, ‘Fig. 2’, …. Figures must be photographically reproducible. Figure captions must be collected on a separate sheet. Figures are normally reduced in a single column of 84 mm width. All lettering should be legible when reduced to this size.

i) Photographs should be supplied as glossy prints and pasted firmly on a hard sheet. When several photographs are to make up one presentation, they should be arranged without leaving margins in between and separately identified as (a), (b), (c)... Magnification must be indicated by means of an inscribed scale.

ii) Line drawings must be drafted with black ink on white drawing paper. High-quality glossy prints are acceptable.

iii) Color printing can be arranged, if the reviewers judge it necessary for proper presentation. Authors or their institutions must bear the costs.

iv) Axis labels should be of the form: Stress (MPa), Velocity (m s⁻¹).

v) Each figure must be supplied in digital form as a separate, clearly named file. Acceptable file formats are TIFF and JPEG. Images should be saved at a resolution of at least 600 dpi at final size (dpi= dots or pixels per inch; 600 dpi=240 dots per centimeter). Do not save at the default resolution (72 dpi). Crop any unwanted white space from around the figure before sizing.

Equations: Equations are numbered consecutively, with equation numbers in parentheses flush right. First use the equation editor to create the equation. Be sure that the symbols in your equation are defined before the equation appears, or immediately following. Refer to “Eq. (1),” not “(1)”. If what is represented is really more than one equation, the abbreviation “Eqs.” can be used.

Results and discussions: Results should be presented in a logical sequence in the text, tables and figures; repetitive presentation of the same data in different forms should be avoided. The results should contain material appropriate to the discussion.

Conclusions: Although a conclusion may review the main points of the paper, it must not replicate the abstract. A conclusion might elaborate on the importance of the work or suggest applications and extensions. Do not cite references in the conclusion as all points should have been made in the body of the paper. Note that the conclusion section is the last section of the paper to be numbered. The appendix (if present), acknowledgment (if
present), and references are listed without numbers.

Acknowledgements: The source of financial grants and other funding must be acknowledged, including a frank declaration of the authors’ industrial links and affiliations. Financial and technical assistance may be acknowledged here.

References: References must be numbered consecutively. Reference numbers in the text should be typed as superscripts with a closing parenthesis, for example, 1), 2), 3) and 4). List all of the references on a separate page at the end of the text. Include the names of all the authors with the surnames last. Refer to the following examples for the proper format:

ii) Conference Proceedings: Give the title of the proceedings, the editor’s name if any, the publisher’s name, the place of publication, the year of publication and the page number. [Example] Y. Chino, K. Iwai and S. Asai: Proc. of 3rd Int. Symp. on Electromagnetic Processing of Materials, ISIJ, Tokyo, (2000), 279.

6. Reviewing: Every manuscript receives reviewing according to established criteria.

7. Revision of manuscript: In case when the original manuscript is returned to the author for revision, the revised manuscript together with a letter explaining the changes made, must be resubmitted within three months.

8. Proofs: The corresponding author will receive the galley proofs of the paper. No new material may be inserted into the proofs. It is essential that the author returns the proofs before a specified deadline to avoid rescheduling of publication in some later issue.

9. Copyright: The submission of a paper implies that, if accepted for publication, copyright is transferred to the Iron and Steel Society of Iran. The society will not refuse any reasonable request for permission to reproduce a part of the journal.

10. Reprint: No page charge is made. Reprints can be obtained at reasonable prices.

Classification

1. Ironmaking
2. Steelmaking
3. Casting and Solidification
4. Fundamentals of High Temperature Processes
5. Chemical and Physical Analysis
6. Forming Processing and Thermomechanical Treatment
7. Welding and Joining
8. Surface Treatment and Corrosion
9. Transformations and Microstructures
10. Mechanical Properties
11. Physical Properties
12. New Materials and Processes
13. Energy
14. Steel Economics
15. Social and Environmental Engineering
16. Refractories
نکات زیر را رعایت فرمائید:

۱. فرم اشتراک را کامل و خوانا بر کرده و کدپستی و شماره تلفن را حتماً قید فرمائید.

۲. مبلغ اشتراک را می‌توانید از کلیه شعبه‌های بانک ملی ایران در سراسر کشور به کلیه مدت سی پایه شوید. (کد ۳۸۷۷) حواله نمایند و اصل شیفت بانکی را همراه با فرم تکمیل‌شده اشتراک به نشانی:

هیات علمی تحقیقاتی اصفهان، دانشگاه صنعتی اصفهان، بلوار ارگ اصفهان، کدپستی ۹۱۳۳۵۳۱۱۱.

۳. کیفیت شیفت بانکی را تا زمان جدید شماره اشتراک نزدیک خود نگه دارید.

۴. مبلغ اشتراک برای یک سال با هزینه پست و بسته ۲۵۰۰۰۰ ریال می‌باشد.

۵. در صورت نزدیک به اطلاعات بیشتر با تلفن ۰۲۱-۳۳۹۳۲۱۲۱-۲۶ تماس حاصل فرمائید.

برای اعضای انجمن این نشریه بصورت رایگان ارسال می‌گردد.
فرم قرارداد درج آگهی در فصلنامه تخصصی پیام فولاد

امضاء
سلام عالمی
فصیحه پیام فولاد با هدف انتشار یافته‌های علمی، پژوهشی و آموزشی-کاربردی در جهت ارتقاء مطلب فولاد و صنایع وابسته در این زمینه می‌باشد. لذا برای تحقیق این هدف انجمن آهن و فولاد ایران آمادگی خود را جهت انتشار مطالعات و پژوهشی محققان گرامی بطور مقاله‌های علمی و فنی در زمینه‌های مختلف فولاد اعلام می‌نماید.

راهنمای تهیه مقاله

الف) مقالات را در ارسال نشان و نمایش دهید.
ب) مقالات ارسالی نباید قبلاً در نشریه یا نمایشگاه دیگر به بهره مند شده باشند.
ج) مقالات می‌توانند در یکی از دو زبان هیچ نشریه یا مجله در جریان شود.

1- تحصیلی - پژوهشی
2- مورخی
3- ترجمه
4- مطالب موردی

لطفاً مقالات خود را بصورت کامل جدیدتر در ۱۰ صفحه از تایپ مقالات صرفاً با نرم‌افزار Microsoft Word تهیه نمایید و برای تایپ صفحه خودداری شود.

• مطالب تنها بر یک روبه‌رو کاغذ A۴ (۱۰×۲۱۰ میلی‌متر) چاپ شود.
• چاپ مقاله توسط چاپگر لیزری انجام شود.
• صفحات پیام فولاد در حک و اصلاح مطالب آزاد است.
• مسئولیت درست و صحبت مطالب در ارگان نمودارها و عکس‌ها بر عهده نویسندگان/مترجمان مقاله است.

4- مقالات موردی

• شبکه مطلبی و روش آزمایشی ها، تلاش و تحقیق، گزارش مطلب
• مطالعات و مقالاتی که در طی فعالیت‌های پژوهش، آزمایش و تحقیق در صورت نهایت مراجعه به این سایت قرار گرفته باشند.
فناوردهای ولادی
فروشنده هرچه بهتری

سایه‌کش کامپانی

موبایل: 09112737455

Email: info@ab-shot.ir

WWW.AB-SHOT.IR
تولید کننده توربین‌هایی برای شناخت بلیست
تولید کننده انواع مواد ساینده فلمی
(سیاچه، گریت و کات وایر)
تولید کننده قطعات یدکی دستگاه‌های شناک بلیست
شرکت مهندسی بین‌المللی فولاد تکنیک

زمینه فعالیت‌ها
- اجرای پروژه‌ها به روش طرح و ساخت (EPC)
- مشاوره مهندسی و نظارت
- مطالعات امکان سنجی
- مدیریت طرح و کنترل پروژه
- پایری فنی و کنترل
- مهندسی اسپیکان و انجمن صنعتی

امکنی پروژه‌ها
امکنی پروژه‌ها
- انجام، مستقیم و فعالیت‌های طرح استانداردی (از 100 هزار تا 850 هزار ت) در سال
- انجام، مستقیم و فعالیت‌های طرح استانداردی (از 100 هزار تا 850 هزار ت) در سال
- روی آوردن و توزیع از این بازار (از 100 هزار تا 850 هزار ت) در سال
- فعالیت‌های از این بازار (از 100 هزار تا 850 هزار ت) در سال
- نشریات و پاورپوینت‌های فعالیت‌های این بازار (از 100 هزار تا 850 هزار ت) در سال
- شرکت در فعالیت‌های این بازار (از 100 هزار تا 850 هزار ت) در سال
- شرکت در فعالیت‌های این بازار (از 100 هزار تا 850 هزار ت) در سال
- شرکت در فعالیت‌های این بازار (از 100 هزار تا 850 هزار ت) در سال
- شرکت در فعالیت‌های این بازار (از 100 هزار تا 850 هزار ت) در سال

دفتر مرکزی:
اصفهان - خیابان دانشگاه
تلفن مستقیم: 081-329-96321
تلفن فکس: 081-329-96321
کدپستی: 87469

دفتر تهران:
میادین فاطمی - خیابان شهید بهرام مشیری (کوچه کامران سابق) - شیراز
تلفن: 031-48947678
کدپستی: 87469

www.fooladtechnic.ir info@fooladtechnic.ir